No.2ベストアンサー
- 回答日時:
○ブリユアンゾーンがなぜ波数なのか?
⇒
#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。
○なぜウィグナーサイツセルがブリルアンゾーンになるのか?
⇒
例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。
この考え方が他の構造にも適用できます。
回答ありがとうございました。繰り返しが結晶ではポイントになっているのですね。いままでなかなか物性に親しむことができませんでしたが、これからは何とかなりそうです。
No.3
- 回答日時:
まず最も大切かつ重要なことは逆格子をよく理解することです.逆格子は抽象的概念のように見えますが,回折実験を含めて多くの物理現象の理
解には不可欠な具体的概念です.そうすれば物理的意味は明瞭になります.数学的に説明することは簡単です.フォノンに限らず結晶に存在するどんな波でも,その波数ベクトルは指数関数の肩に虚数を伴って存在しますから,波数ベクトルKに2πの整数倍加えてより大きくしても指数関数の性質から関数値は変化しませんから意味を有しません.物理的には波の波長が結晶格子定数aの2倍以下の小さな波長の波は,それより大きな波長の波で記述可能であるという点にあります.逆格子を使えば+-1/(2a)以下の小さな波数ベクトルに,Kaを用いて位相角を使えば+-π以下ということになります.No.1
- 回答日時:
逆格子空間の物理的意味をイメージで考えるため、ブロッホ波を考えます。
周期ポテンシャル中の電子の波や、周期的な屈折率分布をもつ媒質中の電磁波などは、ブロッホ状態となりますよね。その波数kは一般に、ある周期的な任意性を持っています(ただし、ブロッホ状態の波数kの逆数の2π倍が、波長λとはならないことに注意)。その「"周期"を格子として考えよう」というのが逆格子ですよね。よって、波数kは逆格子の格子定数の整数倍の任意性を持つ、と話を持ってくることができますね。ならば、ブロッホ波動のある特性を計るとき、全ての波数を計算しなくても、任意の波数kは、ある一つの逆格子の単位格子の中に、逆格子の格子定数の整数倍引く事によって全て還元できます。この原点を中心とした、逆格子の単位格子をブリユアンゾーンといいます。例を考えたほうが、わかりやすいかもしれません。
例:逆格子の格子定数を1として、0,1,2,...,10の座標のような逆格子を考えます。ある、5.8という波数(規格化して単位を省略します)は、3.8でも、9.8でも同じですので、当然、0.8にも還元してくることができます。ならば、0~1の範囲をブリユアンゾーンと考えれば、便利ですよね(本来は原点を中心としますが、イメージを掴みやすく考えました・・・)。
実空間の格子が直角で定義(もしくは一次元)されていればその格子定数をaとして、逆格子の格子定数は2π/aとなります。
ここで、格子振動を考えた時の波数の周期性は、計算すると2π/aとなることがわかり、これは逆格子の格子定数に他ならず、ゆえ、-π/a~π/aをブリユアンゾーンとしているのではないでしょうか。
注:逆格子ベクトルの大きさを、簡単に、"逆格子の単位格子の大きさ"と表現しました。
注:イメージであり、また、俺は物理学科でないので、厳密性を欠いてるかもしれません・・・。
懇切丁寧な回答ありがとうございます。だいたいのイメージがつかめました。
ついでにもう少し教えていただけますか。
ブリルアンゾーンは逆格子空間のウィグナーサイツセルという、ある種幾何学的なものですが、それがなぜ波数とつながるのかがいまいちわかりません。また、なぜウィグナーサイツセルがブリルアンゾーンになるのでしょうか。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
これ何て呼びますか Part2
あなたのお住いの地域で、これ、何て呼びますか?
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
ブリルアンゾーンについて
物理学
-
第1ブリルアンゾーンについて
物理学
-
フェルミエネルギー
物理学
-
-
4
バンドギャップができる理由って結局?
物理学
-
5
ゼーベック係数の温度依存性について
物理学
-
6
音響モード・光学モード
物理学
-
7
回折における実格子空間と逆格子空間の対応
物理学
-
8
Ewald球とブリルアンゾーンの使い分け
物理学
-
9
電位係数を写真のようにおくと、容量係数及び誘導係数は下の写真のようになるみたいなのですが、どうやって
物理学
-
10
2次元正方格子のブリルアンゾーンのエネルギーギャップについて
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・人生のプチ美学を教えてください!!
- ・10秒目をつむったら…
- ・あなたの習慣について教えてください!!
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・【大喜利】【投稿~9/18】 おとぎ話『桃太郎』の知られざるエピソード
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
基本ベクトルと単位ベクトルの...
-
ベクトル関数の概略を図示せよ...
-
三相交流の仕組みが調べても理...
-
新物理入門の光学のところなん...
-
波数の意味と波数ベクトル
-
重心と質量中心の違いについて
-
電荷と電束、磁荷と磁束について
-
プログラム上でのクリストッフ...
-
Φ=BScosθ の理由
-
運動量と角運動量の違いと慣性...
-
相対性理論
-
力のモーメントの問題が分かり...
-
ベクトル解析と電磁気学 (r^-3 ...
-
物理基礎です。 成分の大きさを...
-
高校物理についてです。 変位と...
-
VRML2.0について教えてください!
-
物理の課題について
-
なぜ、エネルギーはスカラーで...
-
原点からの位置ベクトル
-
r1とr2を幾何的に求めるらしい...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
基本ベクトルと単位ベクトルの...
-
三相交流の仕組みが調べても理...
-
重心と質量中心の違いについて
-
ブリュアンゾーンの物理的な意味
-
ベクトル関数の概略を図示せよ...
-
なぜ、エネルギーはスカラーで...
-
波数の意味と波数ベクトル
-
ミラー指数:面間隔dを求める式...
-
電荷と電束、磁荷と磁束について
-
ベクトルの太文字書きについて...
-
力のモーメントのつりあいで 鉛...
-
角速度のベクトルの方向は何故...
-
連続の式の極(円筒)座標変換(2...
-
ラウエ条件とブラッグ条件
-
物理に出てくる図を描くソフト...
-
【量子力学】エルミート共役と...
-
角運動量ベクトルL=mr^2ベクト...
-
なぜボールについての運動方程...
-
角運動量の方向って何ですか?
-
物理の力や速度は何故ベクトル...
おすすめ情報