プロが教えるわが家の防犯対策術!

自分でもつまらないこととは思っていますが、気になったことがありますので、質問します。
下に関連する項目を順番に並べてあります。

長さ  L   ベクトル
速さ  L/T  ベクトル
加速度  L/T^2   ベクトル
力    ML/T^2   ベクトル
エネルギー  ML^2/T^2   スカラ―

質問したいことは、ベクトルの項目が連なっているのに、なぜ、エネルギーは(あるいはエネルギーから)スカラ―になるのですか?

A 回答 (8件)

空間的方向性がベクトルであり、それが時間的方向になると


方向性のないエネルギー=スカラーになります。
静止質量をエネルギーにするとmc^2であり、運動する物体の
エネルギーがmv^2である時、「静止」とは光速で時間軸方向
に移動していると言えます。
    • good
    • 3
この回答へのお礼

早急な回答ありがとうございました。
<空間的方向性がベクトルであり、それが時間的方向になると
方向性のないエネルギー=スカラーになります。>
新しい視野から解説して頂きました。

お礼日時:2013/01/31 12:28

ANO.7です。


車の速度計の数値は,方向を示さないのでスカラー量です。
重力計は通常各所に働く地球の重力分布を測定する為のもので,測定結果は垂直方向の大きさを示しますから,当然ベクトル量です。ところが,大きな山体などの地質(地形)学的探査では,敢えて水平方向重力分布を求めることがあります。この場合,数値を得ただけではスカラー量でしかありません。
磁界の強さも,磁力線の方向が示されてこそベクトル量ですが,鉄片が吸い寄せられるだけでは『場』の存在を示すだけのスカラー量であり,エネルギーの存在もこれに似ています。
地表での水平重力分布など調べてどうする?という疑問もおありかと思いますが。
重力が発見された当初は,山体の重力調査も行われました。ニュートン力学の検証の為です。
火山のマグマ活動の動向の調査等でも行われています。
    • good
    • 1
この回答へのお礼

ご丁寧に再度の回答ありがとうございました。
ベクトルといわれているものでも、方向を持たなければ(利用しなければ)、スカラーである、ということですね。エネルギーもそれに似ている、ということですね。
難解ですが、よく考えてみます。

お礼日時:2013/02/07 20:00

長さも速さも加速度も力も,全て方向が与えられない単なる量は,全てスカラー量です。


この意味では,ANO.1,2貴重なご意見です。
速度や加速度には,普通,大きさと方向が示される為ベクトル量なのです。
エネルギー自体には,方向性はありません。働く方向が示されると,力の性質を示します。
紐の長さを言うときはスカラー量です。紐を引く方向が示されて初めてベクトル量になります。
エネルギー場には方向がありません。そのエネルギーが力として働いて始めとベクトル性が与えられますが,その結果の仕事量はスカラー量です。
    • good
    • 0
この回答へのお礼

解答ありがとうございます。
<エネルギー自体には,方向性はありません。>
はわかります。
ところで、早さ、加速度、力は、ベクトルですね。その延長にあるエネルギー(ただし、その延長と決めつけることは正しいのか、確固たる自信がありませんが)も、(単純に類推すれば)方向性を持ち、ベクトルであるべきではないか、という疑問が依然として残ります。

お礼日時:2013/02/07 07:56

エネルギーに方向の情報を与えても別に構わないとは思うけどね。


「ベクトル」の性質が使えない。
進行方向が逆向きのものをぶつけてもゼロにならないし
平行四辺形の加法則だって使えない。
だから意味ないんじゃない?
    • good
    • 0
この回答へのお礼

早急な回答ありがとうございます。
仮にエネルギーに方向性を与えても
<意味ないんじゃない>
ですね。

お礼日時:2013/01/31 19:09

力学に限って言えば、エネルギーは仮想的にあらわれる物理量で、実在するものではありません。



(力学の)物の運動や力の伝わり方は、こつこつ運動方程式などを解けば、かならず得られるのですが、その手間を省略して簡単に答えを得るための手段としてエネルギーが存在しているにすぎません。

エネルギーがスカラーというのも、答えを得る手段として、そう決めている。と考えた方が良くて、場合によってはベクトル的な取扱いをすることもあります。
    • good
    • 1
この回答へのお礼

早急な回答ありがとうございました。
<エネルギーは仮想的にあらわれる物理量で、実在するものではありません。>
<手間を省略して簡単に答えを得るための手段>
ですね。
目から鱗、のような説明でした。

お礼日時:2013/01/31 19:05

> エネルギーは、なぜ方向性を失った(持たない)のでしょうか?



よく分かりませんが、
例えば熱エネルギーそのものには「凸凹」がありませんよね。

それが、位置エネルギーや運動エネルギーなどに変わったとしたら
その途端に凸凹ができる(方向性を持つ)からではないでしょうか。
    • good
    • 0
この回答へのお礼

早急な回答ありがとうございました。

まず、私が書いた
<エネルギーは、なぜ方向性を失った(持たない)のでしょうか?>
は、次の思いです。
早さ、加速度、力は、ベクトルですね。その延長にあるエネルギー(ただし、その延長と決めつけることは正しいのか、確固たる自信がありませんが)も、類推すれば、ベクトルであるべきではないか、という思いでした。そして、ベクトルは、回答者の皆さまによれば、方向性を持っており、この方向性は空間の方向を示している、ということだと思います。

あるエネルギーが他のエネルギーに変わった際に、
<その途端に凸凹ができる(方向性を持つ)>
ということですね。

お礼日時:2013/01/31 12:47

大学一般教養科目の物理学程度しか学んでいない者ですので、


答えるのもおこがましいですし自信もありませんが、長さ・速さ・
加速度・力などは方向性があるのでベクトルだが、エネルギー
そのものは、外部から別の条件が加わらない限り方向性がない
のでスカラ―である、と学んだことがあるような気がします。

回答とするにはお粗末ですが、以上、思い出しましたので。
    • good
    • 0
この回答へのお礼

早急な回答ありがとうございました。
<エネルギーそのものは、外部から別の条件が加わらない限り方向性がない>
ですね。
次に、エネルギーは、なぜ方向性を失った(持たない)のでしょうか?

お礼日時:2013/01/31 10:31

単純に言えば、方向性を持っているかどうかでは無いかとおもいます。



ちなみに、位置はベクトルだとおもいますが、長さはスカラーですよね。
    • good
    • 0
この回答へのお礼

早急な回答ありがとうございました。
方向性を持っているものが、ベクトルですね。
そうすると、エネルギーはなぜ方向性を持たないのか、が疑問として湧いてきます。
<位置はベクトルだとおもいますが、長さはスカラーですよね>
解りました。

お礼日時:2013/01/31 09:29

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qベクトル量とスカラー量の判定方法

 
教えてください。

ある物理量がベクトル量なのかスカラー量なのかを簡単に見分ける方法を考えています。

ある物理量がベクトル量なのかスカラー量なのかはその単位で判別出来るでしょうか。

単位で判別出来なければどこに注目すればよいでしょうか。

例えば、

電流[A]はベクトル量ですかスカラー量ですか。

水流[m3/s]はベクトル量ですかスカラー量ですか。

磁束密度[WB/m3]はベクトル量ですかスカラー量ですか。
 
またエネルギーであれば、磁気エネルギーも静電エネルギーも位置エネルギーも熱エネルギーも・・・全てその単位が[J]だからスカラーなのでしょうか。
 

 

Aベストアンサー

No.4です。
間違い易い場面はありますが、その値が正負以外に向きを持たなければスカラー、向きを伴えばベクトルです。

1) No.4で説明した様に、流量は水路や管路が決められていてそこを流れる総量として定義されるので、そのもの自体は向きを持たず、スカラーです。電流も同じです。

2) 標高(位置エネルギ-)、電位、温度、圧力などは空間の各点で向きを伴わずに大きさが決められるのでスカラ-場です。スカラー場はその大きさ自体よりもその勾配が力との関係で物理的な意味を持つことが多いのでベクトルと間違い易いと思います。地図平面上の各点で大きさが定義される「標高」は2次元のスカラー場ですが、その勾配もやはり地図平面上の各点で決まっていて、勾配は2次元のベクトル場になります。3次元の電位と電界、温度と温度勾配、圧力と圧力勾配の関係も同様です。
ベクトル場の多くはスカラー場の勾配で表されますが、磁場の場合はベクトル場の回転になっています。あらゆるベクトル場は数学的にスカラー場の勾配とベクトル場の回転の合計で表すことができます。

3) 単位では判断できません。圧力はスカラー、応力はテンソルですがどちらも単位はパスカルです。

No.4です。
間違い易い場面はありますが、その値が正負以外に向きを持たなければスカラー、向きを伴えばベクトルです。

1) No.4で説明した様に、流量は水路や管路が決められていてそこを流れる総量として定義されるので、そのもの自体は向きを持たず、スカラーです。電流も同じです。

2) 標高(位置エネルギ-)、電位、温度、圧力などは空間の各点で向きを伴わずに大きさが決められるのでスカラ-場です。スカラー場はその大きさ自体よりもその勾配が力との関係で物理的な意味を持つことが多いのでベクトルと間違...続きを読む

Qポテンシャルエネルギーから力を求めるのになぜ偏微分

こんにちは、力学を勉強しております。重力やばねの力が保存力である、ということを学ぶ際に、ポテンシャルエネルギーUを習いました。そして、このポテンシャルエネルギーを位置で微分して力を求める、という次の式が登場しました (~はベクトル表示のための矢印とお考え下さい)。

~F = -(∂U / ∂x) ~i - (∂U / ∂y) ~j - (∂U / ∂z) ~k .... (1)

ここで、なぜ偏微分なのでしょうか。

~F = -(dU / dx) ~i - (dU / dy) ~j - (dU / dz) ~k .... (2)

というように通常の微分では問題になるのでしょうか。

たとえばバネの ポテンシャルエネルギーはU = (1/2)k x^2なので
これを上式(1)のように微分すれば、F = -kxとなります。重力にしても同様に求まります。
ただ、(2)式を使っても、ばねの力も重力も求まってしまいます。

偏微分を使っているからには、その理由があると思うのですが、私の持っているどの教科書にもその説明がなく、突如として偏微分が示されているだけでして悩んでおります。

どうぞ宜しくお願いします。

こんにちは、力学を勉強しております。重力やばねの力が保存力である、ということを学ぶ際に、ポテンシャルエネルギーUを習いました。そして、このポテンシャルエネルギーを位置で微分して力を求める、という次の式が登場しました (~はベクトル表示のための矢印とお考え下さい)。

~F = -(∂U / ∂x) ~i - (∂U / ∂y) ~j - (∂U / ∂z) ~k .... (1)

ここで、なぜ偏微分なのでしょうか。

~F = -(dU / dx) ~i - (dU / dy) ~j - (dU / dz) ~k .... (2)

というように通常の微分では問題になるのでしょうか。

たと...続きを読む

Aベストアンサー

まず、微小変位について仕事がどう書かれるかはわかっていますか?
仕事は一次元運動では力×移動距離ですが、三次元運動では力のベクトルと変位ベクトルの内積になります

ΔW = F・Δr (F, Δrはベクトル)

次に、位置エネルギーの定義ですが、位置エネルギーは仕事の符号を変えたものですから、
この微小変位による位置エネルギーの変化分は

ΔU = - ΔW = - F・Δr = - ( Fx Δx + Fy Δy + Fz Δz ) (*)

ここまでよろしいでしょうか?

次は純粋に数学の問題で、U(x+Δx,y+Δy,z+Δz)をテーラー展開して1次までとると

U(x+Δx,y+Δy,z+Δz) = U(x,y,z) + (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz

ここで

ΔU = U(x+Δx,y+Δy,z+Δz) - U(x,y,z)

と定義すれば

ΔU = (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz

が成り立ちます。つまり、1次までの微小変化であれば、

y,zを止めてxだけ変えたときの変化分、
x,zを止めてyだけ変えたときの変化分、
x,yを止めてzだけ変えたときの変化分、

の合計が全体の変化分に等しいという関係が成り立ちます。
これが全微分ではなく編微分を使う理由です。


この式は

grad U = (∂U/∂x, ∂U/∂y, ∂U/∂z )
Δr = (Δx, Δy, Δz)

というベクトルを導入すれば内積を使って

ΔU = grad U ・ Δr

と書くことができます。

この関数U(x,y,z)を位置エネルギーだとすると、ΔUは微小変位Δr = (Δx, Δy, Δz)に対する位置エネルギーの変化分となりますから、上の(*)の式に等しく

ΔU = grad U ・ Δr=ΔU = (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz
   =- F・Δr = - ( Fx Δx + Fy Δy + Fz Δz )

この二つの式を見比べれば

F = - grad U

成分表記では

Fx = -∂U/∂x
Fy = -∂U/∂y
Fz = -∂U/∂z

となります。

>というように通常の微分では問題になるのでしょうか。

3次元の調和振動子を考えて見ます。その位置エネルギーは

U(x,y,z) = (1/2)k (x^2 + y^2 + z^2)

これを通常の微分をとるとすると、物体は3次元空間の中をある軌道で運動していますから、xの変化と同時にyもzも変化します。つまり、yとzはxの関数と考えられるので

dU/dx = d/dx [ (1/2)k (x^2 + y(x)^2 + z(x) ^2) ]
= k x + k y(x) dy/dx + k z(x) dz/dx

となり、x方向の力kxを導きません。

まず、微小変位について仕事がどう書かれるかはわかっていますか?
仕事は一次元運動では力×移動距離ですが、三次元運動では力のベクトルと変位ベクトルの内積になります

ΔW = F・Δr (F, Δrはベクトル)

次に、位置エネルギーの定義ですが、位置エネルギーは仕事の符号を変えたものですから、
この微小変位による位置エネルギーの変化分は

ΔU = - ΔW = - F・Δr = - ( Fx Δx + Fy Δy + Fz Δz ) (*)

ここまでよろしいでしょうか?

次は純粋に数学の問題で、U(x+Δx,y+Δy,z+Δz)をテーラー展開して1次までとる...続きを読む

Q蒸気圧ってなに?

高校化学IIの気体の分野で『蒸気圧』というのが出てきました。教科書を何度も読んだのですが漠然とした書き方でよく理解できませんでした。蒸気圧とはどんな圧力なのですか?具体的に教えてください。

Aベストアンサー

蒸気圧というのは、主として常温付近で一部が気体になるような物質について用いられる言葉です。

液体の物質の場合に、よく沸点という言葉を使います。
物質の蒸気圧が大気圧と同じになったときに沸騰が起こります。
つまり、沸点というのは飽和蒸気圧が大気圧と同じになる温度のことを言います。
しかし、沸点以下でも蒸気圧は0ではありません。たとえば、水が蒸発するのは、常温でも水にはある程度の大きさ(おおよそ、0.02気圧程度)の蒸気圧があるためにゆっくりと気化していくためであると説明できます。
また、油が蒸発しにくいのは油の蒸気圧が非常に低いためであると説明できます。

さきほど、常温での水の飽和蒸気圧が0.02気圧であると述べましたが、これはどういう意味かと言えば、大気圧の内の、2%が水蒸気によるものだということになります。
気体の分圧は気体中の分子の数に比例しますので、空気を構成する分子の内の2%が水の分子であることを意味します。残りの98%のうちの約5分の4が窒素で、約5分の1が酸素ということになります。

ただし、上で述べたのは湿度が100%の場合であり、仮に湿度が60%だとすれば、水の蒸気圧は0.2x0.6=0.012気圧ということになります。

蒸気圧というのは、主として常温付近で一部が気体になるような物質について用いられる言葉です。

液体の物質の場合に、よく沸点という言葉を使います。
物質の蒸気圧が大気圧と同じになったときに沸騰が起こります。
つまり、沸点というのは飽和蒸気圧が大気圧と同じになる温度のことを言います。
しかし、沸点以下でも蒸気圧は0ではありません。たとえば、水が蒸発するのは、常温でも水にはある程度の大きさ(おおよそ、0.02気圧程度)の蒸気圧があるためにゆっくりと気化していくためであると説明できま...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q水素結合とはどういうものですか?

現在、化学を勉強している者です。水素結合についての説明が理解できません。わかりやすく教えていただけないでしょうか?また、水素結合に特徴があったらそれもよろしくお願いします。

Aベストアンサー

要は、「電気陰性度の大きい原子に結合した水素と、電気陰性度の大きい原子の間の静電的な引力」です。
電気陰性度の大きい原子というのは、事実上、F,O,Nと考えて良いでしょう。
電気陰性度の大きい原子と結合した水素上には正電荷(δ+)が生じます。また、電気陰性度の大きい原子上には負電荷(δー)が存在します。

水素が他の原子と違うのは、その価電子が1個しかないことです。つまり、他のイオンとは異なり、H+というのは原子核(通常は陽子)のみになります。他のイオンの場合には、内側にも電子格殻が存在しますので、原子格がむき出しになることはありません。
ご存じと思いますが、原子核というのは原子のサイズに比べてはるかに小さいために、H+というのは他のイオンとは比べ物にならないほど小さいといえます。もちろん、正電荷を持つ水素というのは水素イオンとは異なりますので、原子殻がむき出しになっているわけではありませんが、電子が電気陰性度の大きい原子に引き寄せられているために、むき出しに近い状態になり、非常に小さい空間に正電荷が密集することになります。
そこに、他の電気陰性度の大きい原子のδーが接近すれば、静電的な引力が生じるということです。
そのときの、水素は通常の水素原子に比べても小さいために、水素結合の結合角は180度に近くなります。つまり、2個の球(電気陰性度の大きい原子)が非常に小さな球(水素原子)を介してつながれば、直線状にならざるを得ないということです。

要は、「電気陰性度の大きい原子に結合した水素と、電気陰性度の大きい原子の間の静電的な引力」です。
電気陰性度の大きい原子というのは、事実上、F,O,Nと考えて良いでしょう。
電気陰性度の大きい原子と結合した水素上には正電荷(δ+)が生じます。また、電気陰性度の大きい原子上には負電荷(δー)が存在します。

水素が他の原子と違うのは、その価電子が1個しかないことです。つまり、他のイオンとは異なり、H+というのは原子核(通常は陽子)のみになります。他のイオンの場合には、内側にも電子格殻...続きを読む

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む

Q重力のした仕事と位置エネルギーの関係

次のケース1について、お伺いします。
基本的な内容なのですが、困惑しております。どうかヒントを下さい。

(ケース1)
地表(高さ0m)にある物体(質量 m)を高さhまでもっていきます。
すると、物体はmghの位置エネルギーをもちます。
ところでこの位置エネルギーは、重力(-mg)のする仕事と関係があるかと思います。
しかし重力のする仕事は、-mghと負の値です。

重力のするこの負の仕事と位置エネルギーをどう結びつけて考えるのかが分かっておりません。

また、物体を高さhに持っていくには、重力に逆らう上向きの力が必要で、重力と大きさが同じで
向きが異なる力F (= mg)という力でhまでもって行ったとします。

Fのした仕事は、mghで正ですが、すると物体は正味でゼロの仕事(Fのした仕事+重力のした仕事 = 0)
を受けたことになり、地表にあったときとエネルギー状態が変わらないことになってしまいます。
しかし実際は、位置エネルギーmghをもっているはずです。


たとえば、
(ケース2)として、最初物体が高さhにあったとし、地表に落ちていき、地表に着く直前の速さを求める、という
場合は、
1/2mv^2 = mgh
と求められますが、右辺は位置エネルギーとも見えますが、重力のした仕事で、
重力のした仕事が運動エネルギーに変わったとなり、とても分かり易く納得がいきます。


ケース1をよく説明する方法を教えて頂きたく、どうか宜しくお願い致します。

次のケース1について、お伺いします。
基本的な内容なのですが、困惑しております。どうかヒントを下さい。

(ケース1)
地表(高さ0m)にある物体(質量 m)を高さhまでもっていきます。
すると、物体はmghの位置エネルギーをもちます。
ところでこの位置エネルギーは、重力(-mg)のする仕事と関係があるかと思います。
しかし重力のする仕事は、-mghと負の値です。

重力のするこの負の仕事と位置エネルギーをどう結びつけて考えるのかが分かっておりません。

また、物体を高さhに持っていくには、重力に逆ら...続きを読む

Aベストアンサー

まず位置エネルギーの前に,その基礎となるエネルギー原理を理解されるとすっきりすると思います。

エネルギー原理
--------------------------------
運動エネルギーの変化=された仕事
--------------------------------
Δ(1/2・mv^2) = W
or
1/2・mv^2 - 1/2・mv0^2 = W

物体を高さhまでもちあげるとき,
手力がした仕事:F×h = mgh
重力がした仕事:-mg×h = -mgh
された仕事の合計:W = 0

エネルギー原理によって,運動エネルギーの変化がゼロ,ということになります。ちゃんとつじつまが合っていますね?

0 = F・h + (-mgh)

そこで(-mgh)を移項して左辺に持ってきます。

0 + mgh = F・h

左辺は力学的エネルギーの変化分を表しています。これを拡張された「エネルギー原理」と呼ぶことにしましょう。

拡張されたエネルギー原理
----------------------------------------------------------------------
力学的エネルギーの変化=保存力(上の例では重力)以外の力によってされた仕事
----------------------------------------------------------------------
右辺がゼロの場合,これは力学的エネルギー保存の法則になります。

つまり,位置エネルギーとは

(1)物体を基準点からその点まで移動したときに,重力からされる仕事の符号を変えたもの
または,
(2)物体をその点から基準点にもどすときに,重力からされる仕事
と定義されるわけです。

したがって,位置エネルギーを考えに入れるならば「重力による仕事」はもはや忘れて下さい。符号が異なるだけで同じものなので,両方を一緒に考えることはできないのです。

まず位置エネルギーの前に,その基礎となるエネルギー原理を理解されるとすっきりすると思います。

エネルギー原理
--------------------------------
運動エネルギーの変化=された仕事
--------------------------------
Δ(1/2・mv^2) = W
or
1/2・mv^2 - 1/2・mv0^2 = W

物体を高さhまでもちあげるとき,
手力がした仕事:F×h = mgh
重力がした仕事:-mg×h = -mgh
された仕事の合計:W = 0

エネルギー原理によって,運動エネルギーの変化がゼロ,ということになります。ちゃんとつじつまが合っていますね?
...続きを読む

Q分子結晶と共有結合の結晶の違いは?

分子結晶と共有結合の結晶の違いはなんでしょうか?
参考書を見たところ、共有結合の結晶は原子で出来ている
と書いてあったのですが、二酸化ケイ素も共有結合の
結晶ではないのですか?

Aベストアンサー

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素SiO2の場合も
Si原子とO原子が共有結合し、この結合が立体的に繰り返されて
共有結合の物質というものをつくっているのです。
参考書の表現が少しまずかったのですね。
tomasinoさんの言うとおり、二酸化ケイ素も共有結合の結晶の1つです。

下に共有結合の結晶として有名なものを挙げておきます。

●ダイヤモンドC
C原子の4個の価電子が次々に4個の他のC原子と共有結合して
正四面体状に次々と結合した立体構造を持つのです。
●黒鉛C
C原子の4個の価電子のうち3個が次々に他のC原子と共有結合して
正六角形の網目状平面構造をつくり、それが重なり合っています。
共有結合に使われていない残りの価電子は結晶内を動くことが可能なため、
黒鉛は電気伝導性があります。
(多分この2つは教科書にも載っているでしょう。)
●ケイ素Si
●炭化ケイ素SiC
●二酸化ケイ素SiO2

私の先生曰く、これだけ覚えていればいいそうです。
共有結合の結晶は特徴と例を覚えておけば大丈夫ですよ。
頑張って下さいね♪

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素Si...続きを読む

Qタンジェントとアークタンジェントの違い

タンジェントとアークタンジェント、サインとアークサイン、コサインとアークコサインの違いをすごく簡単に教えてください。

Aベストアンサー

タンジェントやサイン、コサインは、角度に対する関数です。
例えば
 tan60°=√3
のような感じで、角度を入力すると、値が出てきます。

逆に、アークタンジェントなどは、数値に対する関数です。
 arctan√3=60°
などのように、数値を入力すると角度が出てきます。

そして、タンジェントとアークタンジェントの関係は、
springsideさんも書いてありますが、逆関数という関係です。
逆関数というのは、原因と結果が逆になるような関数です。
例えば、
  45°→タンジェント→1
  1  →アークタンジェント→45°
のように、「1」と「45°」が逆の位置にありますよね?
こういう関係を、「逆関数」というんです。

どうでしょう、わかりましたか?


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング