No.2ベストアンサー
- 回答日時:
ベクトル記号は省略。
ガリレイ変換はr~=r-ut (or r=r~+ut)
t~=t (1)
と書かれますね。
f=f(r~,t~)
とすると合成関数の微分法より
∂f/∂r=(∂f/∂r~)(∂r~/∂r)+(∂f/∂t~)(∂t~/∂r)
=∂f/∂r~=∇~f (∵∂t~/∂r=0) (2)
∂f/∂t=(∂f/∂r~)(∂r~/∂t)+(∂f/∂t~)(∂t~/∂t)
=∇~f・(-u)+∂f/∂t~
=-u・∇f+∂f/∂t~ (∵∂t~/∂t=1) (3)
これから問題の式はすぐ出ますね。ところで、(3)で左辺はrを固定した偏微分、右辺の∂f/∂t~はr~を固定した偏微分です。このことからt=t~であるにもかかわらず∂f/∂tと∂f/∂t~とはずれてくることになります。
>「∂」のふりがながわかりません
ラウンドと呼んだりしていますが。
No.3
- 回答日時:
r、fはKでの位置ベクトルとある関数、
r~、f~はK~での位置ベクトルとある関数だとする。
r = r~+ut
なので、
f(r,t)
= f(r~+ut,t)
= f~(r~,t)
= f~(r-ut,t)
となります。
問題の式は以下のようになります。
∂f~(r~,t)/∂t …(1)
= df(r,t)/dt [r~=一定] …(2)
= df(r~+ut,t)/dt …(3)
= ∂f(r,t)/∂t + ∂f(r,t)/∂r dr/dt
= ∂f(r,t)/∂t + u∇f
(1)式では独立変数はr~、tで、
微分は、tについてのみの偏微分です。
f~をfに置き換えた(2)式では、
rがtに依存しますので、
tでの微分はrも微分する必要があります。
そこで、r=r~+utと変数変換して、
(3)式のようにします。
あとは普通の関数の微分と同様に、
微分すればOKです。
また、以下のように計算してもわかります。
df(r,t)
= ∂f(r,t)/∂r dr + ∂f(r,t)/∂t dt
= ∂f~(r~,t)/∂r~ dr~ + ∂f~(r~,t)/∂t dt
= df~(r~,t)
∴
∂f~(r~,t)/∂t
= ∂f(r,t)/∂r dr/dt
+ ∂f(r,t)/∂t dt/dt
- ∂f~(r~,t)/∂r~ dr~/dt
dt/dt = 1
この場合
dr/dt = u
dr~/dt = 0
なので、
= ∂f(r,t)/∂t + u∂f(r,t)/∂r
= ∂f(r,t)/∂t + u∇f
となります。
ありがとうございます。なんか図とか書いて理解しようとしてたのがかえっていけなかったんですね。考えてみれば、多変数の微分だったんですね。
No.1
- 回答日時:
>∂の読み方
文字自体は d の手書き崩し形の一種で、丸まったd(round d)とか言う人もいます。
ABC…Zはローマ帝国が定めた文字(ローマ文字)なのでイタリック体かな?
だが現代日本の手書き文字には明朝体などの書体名が無いのと同様、名称は無いようです。
http://www.comunesofitaly.org/Links/Handwriting. …
適当に漢字登録しておけばいいんです。ちなみに僕は「デル」で ∂/∂、∂/∂t、… などを登録してあります。
質問が読みづらくてイミフメです。ベクトルに↑を付けて書く人が居ますが、最初に「位置ベクトルr、速度ベクトルu」と説明すべきで個々に↑は付けません。これは理数系共通の約束事です。
ポテンシャル(スカラ関数)はφやΨのギリシャ文字が普通なので f の説明が欲しいですね。(∇をとってるからスカラ関数かなと思うけど。)
∂f/∂t[r↑] は r∂f/∂t のことですか。
参考URL:http://www.comunesofitaly.org/Links/Handwriting. …
ありがとうございます。ATOKを使っているのですが、ラウンドとやってもきごうで変換してもだめでした。ベクトルについては本当はタグを使ってボールド体で表記できればいいのですが・・・。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 角運動量の式変形が分かりません。 4 2022/08/03 21:04
- 物理学 角運動量の定義式 4 2022/12/18 05:36
- 物理学 面積速度一定の法則を(1/2)r v sinθを使って証明する方法 2 2023/06/25 12:43
- 物理学 ベクトルと座標系につきまして 1 2022/04/03 06:23
- 物理学 なめらかな水平面の床の上に、質量 200 g の物体がある。床の面を xy 面とし、鉛直方向に z 1 2022/07/23 11:28
- 物理学 xy平面上を運動する物体Aがある。この物体の時刻tにおける位置ベクトルra(t)がra(t)=p + 2 2022/05/22 14:00
- 物理学 xy平面上を運動する物体Aがある。この物体の時刻tにおける位置ベクトルra(t)がra(t)=p + 1 2022/05/23 21:39
- 物理学 相対性理論の加速度とは。 3 2023/06/20 09:29
- 数学 高校物理 相対速度の式について 5 2022/05/11 00:14
- 物理学 ①運動量ベクトルをpとしてニュートンの運動方程式を微分方程式の形で表すとどうなりますか? ②運動中質 3 2022/10/15 22:48
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
一番好きな「クリスマスソング」は?
街に出ればクリスマスソングを聞かない日はないくらい、 いろんな曲がかかっていますよね。 あなたが一番好きな「クリスマスソング」を教えてください!
-
これが怖いの自分だけ?というものありますか?
人によって怖いもの(恐怖症)ありませんか? 怖いものには、怖くなったきっかけやエピソードがあって聞いてみるとそんな感覚もあるのかと新しい発見があって面白いです。
-
自分の通っていた小学校のあるある
進学したり大人になってから、「あれって自分の小学校だけだったのかな」と思うことありますよね。 逆に「他の小学校ってそんなことするの!?」と思ったり。 そんな「自分の通っていた小学校」のあるあるを教えてください!
-
【穴埋めお題】恐竜の新説
【大喜利】 考古学者が発表した衝撃の新説「恐竜は、意外にもそのほとんどが〇〇〇」 (〇〇〇に入る部分だけを回答して下さい)
-
フーリエ級数の問題で、f(x)は関数|x|(-π<x<π)で同期2πで
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】看板の文字を埋めてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
ベクトル関数の概略を図示せよ...
-
波数の意味と波数ベクトル
-
ミラー指数:面間隔dを求める式...
-
重心と質量中心の違いについて
-
質量は何故ベクトルでないのか
-
角運動量の方向って何ですか?
-
ガウスの発散定理にスカラーの...
-
移動ベクトルの求め方
-
角度からベクトルって求めるこ...
-
物理 逆格子
-
速度の定義で距離がスカラー時...
-
物理に出てくる図を描くソフト...
-
ラウエ条件とブラッグ条件
-
基本ベクトルと単位ベクトルの...
-
波数ベクトル(波動ベクトル)...
-
ベクトルと座標系につきまして
-
合力の問題。
-
ベクトルの太文字書きについて...
-
大学物理の問題について
-
角速度のベクトルの方向は何故...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
ベクトル関数の概略を図示せよ...
-
基本ベクトルと単位ベクトルの...
-
三相交流の仕組みが調べても理...
-
重心と質量中心の違いについて
-
波数の意味と波数ベクトル
-
ブリュアンゾーンの物理的な意味
-
角速度のベクトルの方向は何故...
-
ベクトルの太文字書きについて...
-
なぜ、エネルギーはスカラーで...
-
ミラー指数:面間隔dを求める式...
-
RL,RC並列回路のベクトル軌跡
-
電荷と電束、磁荷と磁束について
-
角運動量の方向って何ですか?
-
角運動量ベクトルL=mr^2ベクト...
-
風向の平均処理
-
物理の二乗平均速さなのですが
-
物理の力や速度は何故ベクトル...
-
ラウエ条件とブラッグ条件
-
力のモーメントのつりあいで 鉛...
-
仕事はなぜスカラー?
おすすめ情報