No.4ベストアンサー
- 回答日時:
前にも書いたつもりですが
y軸対称であることを言うのにtは関係ありません。
(と言ってしまうと言い過ぎですが)
xのときと-xのときにyの値が同じになる
というのがy軸対称です。
xのときのyの値(tでつながっているからtを使う)と
-xのときのyの値(これも同様)を計算して等しいか
どうかだけです。
xからtを求める→yの式のtに代入
-xからtを求める→yの式のtに代入
2つが等しければy軸対称
いまの問題式でいえば
xのときtとすると
-xのときt+π
それをyに代入して等しいのでy軸対称です。
x軸対称
yからtを求める→xの式のtに代入
-yからtを求める→xの式のtに代入
2つが等しければx軸対称
だけど
yのときtとすると
-yのときt+(π/2)
これをxの式に代入すると・・・・
xの値は等しくならないのでx軸対称ではないと思ったが
#3のtarameさんの式で対称性が示される。
yの値に対して複数のxが存在するらしい。
ためしにtを消去してみると
x^4-4x^2+4y^2=0
たしかにx軸、y軸に対称である。
No.3
- 回答日時:
すでに、お二人の方がご指摘の通りx軸に対する対称性の式は間違っていますね。
y軸に対する対称性ですが、
>x(t+π)=-x(t),y(t+π)=y(t)
は、確かに成り立っていますね。
x0=x(t0),y0=y(t0)とすると、
t=t0+πのとき
x1=x(t)=-x0,y1=y(t)=y0となり
(x0,y0)と(x1,y1)はy軸で対称な点となります。
よって 「0≦t≦π でのグラフ」と「π≦t<2π でのグラフ」はy軸で対称であるといえます。
x軸対称のほうですが、
x(-t-π/2)=x(t),y(-t-π/2)=-y(t)という式で対称性を示すことが出来そうですね。
この回答への補足
投稿まことにありがとうございます。ところで、y(t+π)=y(t)が成り立つことは分かるのですが、それがどうして、y軸に対して対称といえるのでしょうか?また、x(t)に対しても同時に調べなければならないのはなぜでしょうか?引き続きお願いします。
補足日時:2004/08/24 13:03No.2
- 回答日時:
たしかに x(t)=cos(t+π/4)ではx(-t)=x(t)は成り立ちませんね。
何か式を間違えていませんか?
座標軸に関する対称性の一般論として
(媒介変数はとりあえず考えないで)
y=f(x) がy軸対称である条件をいえますか?
あるいはx=g(y)がx軸対称である条件をいえますか。
媒介変数が話を厄介にしています。一時よけておいて
ください。
>x(t)、y(t)両方調べなくてはいけないのかも分かりません
いま問題にしているのはxy平面におけるx軸(あるいはy軸)に関する問題でしょう。t軸ではないですね。
当然xとyの関係を調べなくてはなりません。
No.1
- 回答日時:
>このグラフのx軸、y軸に対する対称性がなぜ、{x(-t)=x(t)、y(-t)=-y(t)}(←x軸に対する対称性)、{x(t+π)=-x(t),y(t+π)=y(t)}(←y軸に対する対称性)で与えられる
これ、間違ってませんか?
そもそも、x(t)=x(-t)とはなっていませんし。
このグラフの対称性について調べる時には、
次のように考えます。
~x軸に対する対称性~
ある1つのxについて、tの値が二つ存在し、
その二つのtについてそれぞれyを計算すると、
それらが異符号の関係になっている。
具体的には、
x(t)=x0 を満たすようなtは二つあって、
片方をt1=α とすれば、
他方はt2=-α + 3/2π です。
t1、t2それぞれをy(t)の式に代入すると、
y(t1)=cos2α
y(t2)=-cos2α
となるので、y(t1)=-y(t2)の関係が
成り立っていることが分かります。
よって、このグラフはx軸対称となります。
y軸対象について考える場合も同じ考え方で出来るはずです。
こんな感じで大丈夫ですか?
投稿ありがとうございます!そうなんですよ。間違っているかどうかはちょっと自分でも分からないのです。Y軸について、なぜ、Y(t+π)なのか、ぜんぜん分からないのです。自分も調査中なので、今後ともよろしくお願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
チョコミントアイス
得意ですか?不得意ですか?できれば理由も教えてください。
-
CDの保有枚数を教えてください
ひとむかし前はCDを買ったり借りたりが主流でしたが、サブスクで簡単に音楽が聴ける今、CDを手に取ることも減ってきたかと思います。皆さんは2024年現在、何枚くらいCDをお持ちですか?
-
自分のセンスや笑いの好みに影響を受けた作品を教えて
子どもの頃に読んだ漫画などが その後の笑いの好みや自分自身のユーモアのセンスに影響することがあると思いますが、 「この作品に影響受けてるな~!」というものがあれば教えてください。
-
架空の映画のネタバレレビュー
映画のCMを見ていると、やたら感動している人が興奮で感想を話していますよね。 思わずストーリーが気になってしまう架空の感動レビューを教えて下さい!
-
媒介変数表示における対称性の確認方法(大学受験)
数学
-
媒介変数表示の関数のx,y軸対称を判別する方法
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
【 数I 2次関数 】 問題 放物線...
-
至急!y=2X^2を変形(平方完成)...
-
楕円の書き方
-
数学の変数にはなぜ「x」が使わ...
-
二次関数の良さ
-
添付画像の放物線はどんな式で...
-
楕円についてです ①教科書の楕...
-
凸集合かどうか証明する問題で...
-
放物線y=x^2-3xと y=0,y=4 で囲...
-
数3 放物線 y^2=4pxという式を...
-
この問についてRの範囲は(t/k,...
-
放物線を描くゲームプログラム...
-
y=x^2+kとx^2+y^2=1が共有...
-
2次関数
-
数学における「一般に」とは何...
-
ワードで手書きグラフ
-
y=ax^2+bx+cのbは何を表してい...
-
高一 二次関数 Q,二次方程式x^2...
-
数学Iについて教えてください!!...
-
軌跡の「逆に」の必要性につい...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
噴水はなぜ放物線をえがくので...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の書き方
-
楕円の焦点,中心を作図で求め...
-
2:1正楕円とは何ですか?
-
添付画像の放物線はどんな式で...
-
日常生活で放物線や双曲線の例...
-
tの値が変化するとき、放物線y=...
-
二次関数の良さ
-
双曲線の焦点を求める時はなぜ√...
-
【至急】困ってます! 【1】1、...
-
【 数I 2次関数 】 問題 放物線...
-
放物線y=2x² を平行移動した曲...
-
パラボラアンテナはなぜ放物線...
-
頂点が点(2,6)で、点(1,4)を通...
-
2つの楕円の交点の求め方が分...
-
数学の問題です。 実数x、yが、...
-
数3 放物線 y^2=4pxという式を...
-
数学における「一般に」とは何...
おすすめ情報