No.3ベストアンサー
- 回答日時:
複素数を x+yi (x,yは実数) と書けば、 x と y。
複素数を u+vi (u,vは実数) と書いたなら、 u と v。
p+qi (p,qは実数) ならば、 p と q。
何でもいいんですよ。
座標軸を何にするかが決まっているのではなくて、
何にしてもいいけど、何にしたかを明示しておく必要があるのです。
文章題を方程式で解くとき、何をどの未知数にしたかを
書いておく必要があるのと同じこと。
自分で決めて、それを明示する。 数学は、いつもこれです。
複素数平面上の点を z で表すなら
実軸を Re z, 虚軸を Im z と呼んでもいいけど、
その場合も、 z が何なのかの説明文は欠かせません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
つい集めてしまうものはなんですか?
人間誰もは1つ「やたらこればかり集めてしまう」というものがあるもの。 あなたにとって、つい集めてしまうものはなんですか?
-
大人になっても苦手な食べ物、ありますか?
大人になっても、我慢してもどうしても食べれないほど苦手なものってありますよね。 あなたにとっての今でもどうしても苦手なものはなんですか?
-
これ何て呼びますか Part2
あなたのお住いの地域で、これ、何て呼びますか?
-
自分のセンスや笑いの好みに影響を受けた作品を教えて
子どもの頃に読んだ漫画などが その後の笑いの好みや自分自身のユーモアのセンスに影響することがあると思いますが、 「この作品に影響受けてるな~!」というものがあれば教えてください。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
複素数平面と座標平面の対応について
数学
-
複素数平面についての質問です。 なぜ、xy座標で(a,b)じゃなくてa+biなんですか?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
【 数I 2次関数 】 問題 放物線...
-
至急!y=2X^2を変形(平方完成)...
-
楕円の書き方
-
数学の変数にはなぜ「x」が使わ...
-
二次関数の良さ
-
添付画像の放物線はどんな式で...
-
楕円についてです ①教科書の楕...
-
凸集合かどうか証明する問題で...
-
放物線y=x^2-3xと y=0,y=4 で囲...
-
数3 放物線 y^2=4pxという式を...
-
この問についてRの範囲は(t/k,...
-
放物線を描くゲームプログラム...
-
y=x^2+kとx^2+y^2=1が共有...
-
2次関数
-
数学における「一般に」とは何...
-
ワードで手書きグラフ
-
y=ax^2+bx+cのbは何を表してい...
-
高一 二次関数 Q,二次方程式x^2...
-
数学Iについて教えてください!!...
-
軌跡の「逆に」の必要性につい...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
噴水はなぜ放物線をえがくので...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の書き方
-
楕円の焦点,中心を作図で求め...
-
2:1正楕円とは何ですか?
-
添付画像の放物線はどんな式で...
-
日常生活で放物線や双曲線の例...
-
tの値が変化するとき、放物線y=...
-
二次関数の良さ
-
双曲線の焦点を求める時はなぜ√...
-
【至急】困ってます! 【1】1、...
-
【 数I 2次関数 】 問題 放物線...
-
放物線y=2x² を平行移動した曲...
-
パラボラアンテナはなぜ放物線...
-
頂点が点(2,6)で、点(1,4)を通...
-
2つの楕円の交点の求め方が分...
-
数学の問題です。 実数x、yが、...
-
数3 放物線 y^2=4pxという式を...
-
数学における「一般に」とは何...
おすすめ情報