
No.1ベストアンサー
- 回答日時:
①
a/b は、可逆元であるばかりでなく、単元にもなっています。
その理由は②です。
任意の体で、全ての単元は可逆元でもあります。
②
f(x), g(x) は、原始多項式なので、既約多項式でもあります。
よって、f(x) の係数の最大公約元, g(x) の係数の最大公約元は
ともに 1 であり、 af(x) の係数の最大公約元は a、
bg(x) の係数の最大公約元は b になります。
af(x)=bg(x) より、af(x) の係数の最大公約元と
bg(x) の係数の最大公約元は「単元倍を同一視すると」等しい。
よって、a/b は単元です。
素因数分解の一意性が「単元倍を同一視すると」一意
という意味だったのを思い出しましょう。
No.3
- 回答日時:
a,bが最大公約元だから
bはaの約元だから
a/bはAの元
aはbの約元だから
b/aはAの元
だから
a/bとその逆元b/aがともにAの元だから
a/bはAの単元である
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
今、見られている記事はコレ!
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
f(x) g(x) とは?
-
マクローリン展開の問題です n=...
-
左上図、左下図、右上図、右下...
-
微分の問題
-
三次関数が三重解を持つ条件とは?
-
n次導関数
-
次の関数の増減を調べよ。 f(x)...
-
"交わる"と"接する"の定義
-
1/(aω+b)の有理化
-
微小量とはいったいなんでしょ...
-
フーリエ級数について
-
大学数学 解析学 区間[a,b]で...
-
f(x)=x√(2x-x^2)が与えられて...
-
微分積分問題の必要十分条件に...
-
数学の f(f(x))とはどういう意...
-
因数分解
-
微分について
-
数学の問題です。 f(x)=x^ne^-x...
-
差分表現とは何でしょうか? 問...
-
【数3 式と曲線】 F(x、y)=0と...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
微小量とはいったいなんでしょ...
-
数学の f(f(x))とはどういう意...
-
微分について
-
大学の問題です。
-
マクローリンの定理の適用のし...
-
差分表現とは何でしょうか? 問...
-
ニュートン法について 初期値
-
【数3 式と曲線】 F(x、y)=0と...
-
左上図、左下図、右上図、右下...
-
「次の関数が全ての点で微分可...
-
f(x)=sin(x)/x って、とくにf(0...
-
"交わる"と"接する"の定義
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
関数方程式f(x)=f(2x)の解き方...
-
次の等式を満たす関数f(x)を求...
-
yとf(x)の違いについて
-
n次導関数
-
z^5=1の虚数解の一つをαと置く...
-
x<1の時、e^x <= 1/(1-x) であ...
おすすめ情報