

No.2ベストアンサー
- 回答日時:
こんにちは!!
偶関数:f(-t)=f(t)
奇関数:f(-t)=-f(t)
が全てのtに対して成り立つような関数を偶関数・奇関数と呼びます。
(イメージ的には、y軸対象な関数が偶。原点対象が奇。)
cosxは偶関数(cos(-x)=cos(x))、sinxは奇関数(sin(-x)=-sin(x))です。
ちなみに余計なお節介かもしれませんが一応言っとくと、
偶関数×偶関数=偶関数
奇関数×奇関数=偶関数
偶関数×奇関数=奇関数が成り立ちます。
ですから、f(x)が奇関数であれば、f(x)cosxは奇関数です。
奇関数を一周期分積分すると総和は0になりますから、f(x)が奇関数の場合は、sin(x)の係数だけ計算すればよく、正弦展開の形で書けます。(cos(x)の係数は0になってしまうので)
逆にf(x)が偶関数の場合、f(x)sinxが奇関数になり、sinxの係数を求める積分が0になるので、cosxの係数だけを計算すればよいんですね。。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数を求めよという問題の解 1 2023/02/06 18:20
- 数学 f(x)=1 (0<x<L) f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求 1 2022/12/01 17:05
- 数学 f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求めよという問題が分からないので 3 2022/12/03 14:39
- 数学 f(x)=x+1 (-π<x≦π)のフーリエ級数の複素フーリエ級数を求めよという問題が分からないので 1 2022/12/13 17:30
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数について、 an=4/ 1 2023/02/10 14:18
- 大学・短大 絶対値付きのフーリエ級数について 1 2022/04/23 11:23
- 工学 周波数fで表現したフーリエ変換の対称性に関する質問です。 1 2022/09/14 12:27
- 数学 積分の偶関数奇関数は、xの累乗がそれぞれ偶数、奇数のみを解くのですか? 4 2023/08/02 19:14
- 数学 数学の質問です。 関数f(t)のフーリエ変換をF(ω)=∫[-∞→∞]f(t)exp(-iωt)dt 1 2023/07/29 01:08
- 物理学 フーリエ変換の振幅について 1 2022/09/04 08:56
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
マクローリンの定理の適用のし...
-
微小量とはいったいなんでしょ...
-
無限等比数列
-
f(x) g(x) とは?
-
同値である証明が何回やっても...
-
近似値
-
aを実数の整数とする。2つの二...
-
定積分に関する初歩的な定理の...
-
大学の代数学の問題です α=√(5...
-
区分求積法の公式 lim(n→∞)1/nΣ...
-
【数3 式と曲線】 F(x、y)=0と...
-
ニュートン法について 初期値
-
関数の連続性とε-δ論法
-
「次の関数が全ての点で微分可...
-
f(f(x))の性質
-
数学 fとf(x) の違いについて
-
差分表現とは何でしょうか? 問...
-
微分可能
-
フーリエ級数について
-
大学への数学(東京出版)に書...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報