No.2ベストアンサー
- 回答日時:
(1)
3^n=k^3+1…(与式)
0=k^3+1(mod3)
-1=k^3(mod3)
-1=k(mod3)
∴k=3L+2(L≧0)…②
となる整数Lがある
②を(与式)に代入して
3^n=(3L+2)^3+1=(3L+)(9L^2+9+3)
∴3^n=(3^2)(L+1)(3L^2+3L+1)…(A)
3^(n-2)=(L+1)(3L^2+3L+1)
3L^2+3L+1=3^j…③
となる整数j≧0がある
1=3^j(mod3)だから
j=0
↓これを③に代入すると
3L^2+3L+1=1
3L^2+3L=0
L(L+1)=0
↓L+1>0だから
L=0
↓これを(A)に代入すると
3^n=3^2
n=2
↓これを(与式)に代入すると
3^2=k^3+1
8=k^3
2=k
∴
(k,n)=(2,2)
(2)
3^n=k^2-40
3^n=k^2(mod4)
k=0,2(mod4)のときk^2=0(mod4)
k=1,3(mod4)のときk^2=1(mod4)
だから
k^2=0,1(mod4)
nを奇数と仮定すると
n=2j+1となる整数j≧0がある
3^n=3^(2j+1)=3(9^j)=3(4*2+1)^j=3(mod4)
だから
3=k^2(mod4)
となって
k^2=0,1(mod4)
に矛盾するから
nは偶数
だから
n=2mとなる整数mがある
3^n=k^2-40
k^2-3^n=40
↓n=2mだから
k^2-3^(2m)=40
(k-3^m)(k+3^m)=40
(k-3^m)(k+3^m)=1*40
(k-3^m)=1<(k+3^m)=40のとき
(k+3^m)-(k-3^m)=2*3^m=39となって不適
(k-3^m)(k+3^m)=2*20
(k-3^m)=2<(k+3^m)=20のとき
(k+3^m)+(k-3^m)=2k=22→k=11
(k+3^m)-(k-3^m)=2*3^m=18→m=2→n=4
(k-3^m)(k+3^m)=4*10
(k-3^m)=4<(k+3^m)=10のとき
(k+3^m)+(k-3^m)=2k=14→k=7
(k+3^m)-(k-3^m)=2*3^m=6→m=1→n=2
(k-3^m)(k+3^m)=5*8
(k-3^m)=5<(k+3^m)=8のとき
(k+3^m)-(k-3^m)=2*3^m=3となって不適
∴
(n,k)=(2,7)
または
(n,k)=(4,11)
No.1
- 回答日時:
Fermat の定理ですか?
k^(3-1) ≡ 1 (mod 3) から
k^3 ≡ k (mod 3) を導いて使ったんでしょうか。
答案は正しいと思います。
でも、(B) を経由したのはやや冗長かな。
(A) の時点で 3L^3 + 3L + 1 が 3 の冪乗ですから、
mod 3 で考えれば 3(L^2 + L) + 1 = 3^0 しかない
と判ります。よって L = 0, -1 だが、L ≧ 0 より L = 0.
L = 0 のとき k = 2, n = 2 で、これは解になっています。
この 3^0 の使い方は、同じ問題の初回質問のとき
使って見せたような気がします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 整数問題5 続き 6 2023/04/06 11:37
- 数学 整数問題9 激難だそうです 6 2023/04/17 15:58
- 数学 (1) 方程式 65x+31y=1の整数解をすべて求めよ。 (2) 65x+31y=2016 を満た 1 2022/06/29 11:02
- 数学 整数問題4 16 2023/04/02 13:54
- 数学 整数問題9 激難 続き (2) 私の答案にご指導ください 1 2023/04/25 16:41
- 数学 どうか教えてください。 4 2022/07/02 20:18
- 数学 「0 < x ≦ y ≦ zである整数x, y, zについて xyz=x+y+zを満たす整数x, y 2 2023/06/16 11:09
- 数学 nC2=2016 の等式を満たす正の整数nの値を求める問題で n(n-1)/2=2016 n^2-n 4 2023/04/07 16:58
- 数学 確率の問題です。 5 2022/12/20 19:18
- 数学 整数問題 12 平方 32 2023/05/02 13:23
このQ&Aを見た人はこんなQ&Aも見ています
-
【お題】NEW演歌
【大喜利】 若い人に向けたことは分かるけど、それはちょっと寄せ過ぎて変になってないか?と思った演歌の歌詞
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
これ何て呼びますか Part2
あなたのお住いの地域で、これ、何て呼びますか?
-
自分のセンスや笑いの好みに影響を受けた作品を教えて
子どもの頃に読んだ漫画などが その後の笑いの好みや自分自身のユーモアのセンスに影響することがあると思いますが、 「この作品に影響受けてるな~!」というものがあれば教えてください。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
整数問題 兎に角 難問です 千葉大学医学部過去問
数学
-
画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょ
数学
-
質問したい事が2つあります。 ①、以前に質問した2024.5.8 08:24の質問の2024.5.9
数学
-
-
4
2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj
数学
-
5
2024.10.13 05:04にした質問の2024.10.13 05:04に頂いた解答の2024.
数学
-
6
こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(
数学
-
7
2024.8.20 18:17にした質問の、 2024.8.28 15:15の解答の 「g(z)=t
数学
-
8
2024.10.8 12:12に質問した 2024.10.8 13:49に頂いた解答の 2024.1
数学
-
9
一橋大学過去問 整数問題
数学
-
10
どっちのほうが細いと思いますか? 一枚目は去年の1月でbmi 21.5くらい? で20パーセントふつ
ダイエット・食事制限
-
11
天孫降臨の神武天皇のY染色体の継承者の数に関する、私の数学的予測は正しいですよね?
数学
-
12
min関数 一橋大学過去問
数学
-
13
自然定数を底にしたときの、log(π) の 手計算での値は
数学
-
14
一般入試の理系数学と大学編入の数学(1変数関数の基本、テイラー展開、マクローリン展開、ロピタルの定理
数学
-
15
なんでですか?
数学
-
16
これめちゃあやしくないですか???
数学
-
17
一橋大学過去問 整数問題
数学
-
18
一橋大学過去問 整数 素数 かなりの難問だと思います
数学
-
19
微分がムズいです。 新高二です。春休みに数学の先取りをしようと思って数Ⅲをやってます。数2の微分は何
数学
-
20
倉敷芸術科学大学 整数問題
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
lim[x→+∞](x^n/e^x)=0 の証明
-
大学の記述入試で外積は使えま...
-
【遊びのピタゴラスイッチはな...
-
至上最難問の数学がとけた
-
【線形代数】基底、dimVの求め方
-
直角三角形じゃないのに三平方...
-
至急です! 数学で証明について...
-
ファルコンの定理は解かれまし...
-
立体の問題です
-
二次合同式の解き方
-
数A nは自然数とする。n , n+2 ...
-
ほうべき(方巾)の定理について
-
コーシー分布の再生性
-
∠A=90°,AB=4,AC=3の直角三角...
-
十分性の確認について
-
組合せと素数の問題
-
実数の整列化について
-
数学でmodってなんですか?
-
a≡b(mod m),c≡d(mod m)⇒ac≡bd(m...
-
高校の数学です。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
大学の記述入試で外積は使えま...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
至上最難問の数学がとけた
-
パップスギュルダンの定理について
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
【線形代数】基底、dimVの求め方
-
定理と法則の違い
-
二次合同式の解き方
-
相似比の答え方・・・
-
至急です! 数学で証明について...
-
すべての馬は同色である。
-
ほうべき(方巾)の定理について
-
ファルコンの定理は解かれまし...
-
二つの円での平行の証明
-
実数の整列化について
-
拡張ユークリッド互除法による...
-
AとBはn次正方行列とする。 積A...
-
中学2年図形の証明についての質...
-
11・13y≡5(mod9)がy≡4(mod9)にな...
おすすめ情報
前回頂いた回答はこちらです
https://oshiete.goo.ne.jp/qa/13432620.html
何卒宜しくお願い致します。
ありものがたりさん、おはようございます
ご指導ありがとうございます。
私も冗長かな、、と思ってましたので
出来れば(2)もご回答いただけると幸いです
from minamino
やっと、(2) の答案を作成する事が出来ました
どうか
ご評価、ご指導ください
from minamino
答案一部変更です