A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
sin の加法定理より、
r sin(θ+α) = r{ sinθcosα + cosθsinα }
= (r cosα)sinθ + (r sinα)cosθ.
この右辺と sinθ - √3 cosθ が一致するように、
r cosα = 1,
r sinα = -√3 であればよい。
よって、
r = √{ (r cosα)^2 + (r cosα)^2 } = √{ 1^2 + (-√3)^2 } = 2.
(cosα,sinα) = (1/2, -√3/2) より α = -π/3.
最後の α を見つけるところは、知識に依るしかない。知ってた?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 座標変換について 1 2022/08/04 16:42
- 数学 写真の赤線部にについてですが、 どのように展開すれば「cos²5x-cos²3x」から 「sin²3 3 2023/02/13 13:38
- 数学 微分積分の二重積分についての問題がわからないです。 1 2022/07/17 02:36
- 数学 y軸周りの回転行列は ふたつとも間違いですか? 色々探しても cos 0 sin 0 1 0 -si 6 2023/04/24 00:01
- 高校 数3 面積 4 2022/05/11 12:37
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 tan(z)=h(z)/(z-π/2)から h(z)=-(z-π/2)cos(z-π/2)/sin( 2 2022/08/01 23:44
- 数学 数学の三角比についての質問です。 (以前質問してくれ方ありがとうございまし た) 以前の回答何度もよ 4 2023/04/01 02:47
- 数学 4-3√2sinX-2cos^2x=0 のような三角方程式で cos^2を1-sin^2に変換するの 3 2023/03/01 22:59
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
3分あったら何をしますか?
カップ麺にお湯を入れて、できるまでの3分間で皆さんは何をしていますか?
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
何歳が一番楽しかった?
自分の人生を振り返ったとき、何歳のころが一番楽しかったですか? 子供の頃でしょうか、それとも大人になってからでしょうか。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
sinθ―√3cosθ=a(θ+α)の形にしたとき、 a=( )、 α=( ) を解いて下さい
数学
-
三角関数の合成
数学
-
数学 合成の公式 問題
数学
-
-
4
0°≦θ<2π sinθ-√3cosθ=-1この方程式を解け という問題で、何回解いてもθ=π/6、
大学受験
-
5
数学の問題を教えてください。 次の式をrsin(θ+α)の形に変形せよ。ただし、r>0、-π<
高校
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
3辺の比率が3:4:5である直...
-
教えてください!!
-
tanθ=2分の1のときの sinθとcos...
-
e^iθの大きさ
-
sinθ+cosθ=1/3のとき、次の式の...
-
tanθ=1のときcosθの値を求めな...
-
急いでます! θが鈍角で、sinθ...
-
sin二乗2θ+cos二乗2θ=1ですが ...
-
cos0=1、sin0=0の原理教えて...
-
0<x<π/2のとき、不等式sinx+tan...
-
Asinθ-Bcosθの合成は?
-
画像のように、マイナスをsinの...
-
高1 数学 sin cos tan の場所っ...
-
数学IIIができる方!!! 「x+...
-
三角関数 sin cos tanの表につ...
-
三角関数の合成 何故コサインの...
-
三角関数
-
角度θの時、点 Aは画像のように...
-
0<=θ<2πのとき、この式を解いて...
-
「三角関数の極限の計算方法」...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^iθの大きさ
-
θが鈍角のとき、sinθ=4分の3の...
-
高1 数学 sin cos tan の場所っ...
-
画像のように、マイナスをsinの...
-
次の三角比を45°以下の角の三角...
-
tanθ=2分の1のときの sinθとcos...
-
数学Iで分からない問題があります
-
3辺の比率が3:4:5である直...
-
Merchantの最小抵抗説(微分?...
-
教えてください!!
-
急いでます! θが鈍角で、sinθ...
-
sin2xの微分について
-
加法定理の応用問題でcosα=√1-s...
-
この問題の半径rと中心核αの扇...
-
こんど面接なんですが
-
sinθ+cosθ=1/3のとき、次の式の...
-
二つの囲まれた楕円の共通の面...
-
式の導出過程を
-
複素数表示をフェーザ表示で表...
-
三角関数の合成
おすすめ情報