No.1ベストアンサー
- 回答日時:
θは入力しにくいのでtで代用。
x=acost、y=bsint
点(x,y)における接線の傾きmは
m=dy/dx=(dy/dt)/(dx/dt)=bcost/(-asint)
法線の傾きnは
mn=-1を満たす。
よって
n=-1/m=asint/bcost
単位法線ベクトルNの成分(p,q)は
p=kbcost, q=kasint
p^1+q^2=1
を満たす。このとき
k^2b^2cos^2t+k^2a^2sin^2t=1
k=1/√(b^2cos^2t+a^2sin^2t)
よって
N(bcost/√(b^2cos^2t+a^2sin^2t), asint/√(b^2cos^2t+a^2sin^2t))
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 xとyに分解したときの運動方程式がこうなる理由が分かりません。 楕円振動は円運動の一種ですよね。 楕 2 2023/05/08 01:31
- 物理学 どうして放物線ですか? 15 2023/06/11 09:53
- 数学 楕円x^2/a^2+y^2/b^2=1(0≦b≦a)上に点(p,q)を取る。 円C1:x^2+y^2 2 2022/07/18 14:49
- Word(ワード) ワード。フリーフォームの使い方が分かりません。 1 2022/10/06 16:18
- 数学 単位法ベクトルの問題を教えて下さい。 4 2023/06/01 01:24
- 画像編集・動画編集・音楽編集 ワード。頂点の編集。 4 2022/09/28 14:14
- 物理学 歌口と楕円形の太鼓 1 2023/05/15 23:21
- 数学 以前同じ質問をさせていただいたのですが、読み直しても理解できなかったので、再掲します。 写真は楕円の 12 2023/08/22 15:51
- 数学 写真は、楕円の方程式の導出が書かれたものですが、 赤線部で、「b>0とすると」と書かれていて黄線部に 6 2023/08/05 21:02
- スピーカー・コンポ・ステレオ ワード。オブジェクトの上に半円を描くには。 2 2022/10/06 13:02
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
ちょっと先の未来クイズ第6問
2025年1月2日と1月3日に行われる、第101回箱根駅伝(東京箱根間往復大学駅伝競走)で、上位3位に入賞するチームはどこでしょう?
-
自分独自の健康法はある?
こうしていると調子がいい!みたいな自分独自の健康法、こだわりはありますか?
-
AIツールの活用方法を教えて
みなさんは普段どのような場面でAIツール(ChatGPTなど)を活用していますか?
-
「これいらなくない?」という慣習、教えてください
現代になって省略されてきたとはいえ、必要性のない慣習や風習、ありませんか?
-
接平面と法線ベクトルについて教えて下さい
数学
-
楕円面上の法線ベクトル
数学
-
単位法線ベクトルの問題なんですが。。。
数学
-
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
高1 数学 sin cos tan の場所っ...
-
e^iθの大きさ
-
3辺の比率が3:4:5である直...
-
sin2xの微分について
-
画像のように、マイナスをsinの...
-
θが鈍角のとき、sinθ=4分の3の...
-
tanθ=2分の1のときの sinθとcos...
-
複素数表示をフェーザ表示で表...
-
教えてください!!
-
数学 2次曲線(楕円)の傾きの計...
-
sinθ-√3cosθをrsin(θ+α)の形...
-
sinθ+cosθ=1/3のとき、次の式の...
-
cos2分のπ= cos−2分のπ= sin2...
-
∫sin^2x/cos^3xdxの解き方が...
-
式の導出過程を
-
sinθ +cosθ =1/3 (0°≦θ≦ 180°)...
-
【数学】cosθ=0.8|sinθ=0.6の答...
-
分からない問題
-
楕円の単位法線ベクトルがわか...
-
4辺と1つの対角線の長さが分か...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^iθの大きさ
-
3辺の比率が3:4:5である直...
-
tanθ=2分の1のときの sinθとcos...
-
sin2xの微分について
-
画像のように、マイナスをsinの...
-
高1 数学 sin cos tan の場所っ...
-
次の三角比を45°以下の角の三角...
-
教えてください!!
-
加法定理の応用問題でcosα=√1-s...
-
sinθ+cosθ=1/3のとき、次の式の...
-
急いでます! θが鈍角で、sinθ...
-
θが鈍角のとき、sinθ=4分の3の...
-
sin(ωt+θ) のラプラス変換
-
数学Iで分からない問題があります
-
二つの円の重なっている部分の面積
-
数学 2次曲線(楕円)の傾きの計...
-
複素数表示をフェーザ表示で表...
-
三角関数の合成
-
式の導出過程を
-
sin三乗Θ+cos三乗Θの値は?
おすすめ情報
お早い解答ありがとうございます!
「単位法線ベクトルNの成分(p,q)は
p=kbcost, q=kasint 」
の部分がわかりません.簡単な事だとは思うのですが...
他の部分は納得出来ました.
あ、傾きからわかりますよね(笑)
単純なことでした.すいません.