
A 回答 (7件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
複素数の掛け算を一般化すると
ゼロを除く複素数は
e^(a+bi) (a, b は実数) で表されるので
e^(a+bi)・e^(c+di) = e^((a+c) + (b+d)i)
a=c=0 の場合
e^(bi)・e^(di) = e^((b+d)i)
これを cos sinでばらすと
(cosb + isinb)・(cosd + isind) = cos(b+d) + isind(b+d)
これから
(cosb + isinb)^n = cosnb + isinnb
は容易に導けます。
結局、掛け算は指数の和という実数で成り立つ指数法則が
複素数でもそのまま成り立つということです。
(2cosθ+2isinθ)^n = {e^(log2 + iθ) }^n
= e^(nlog2 + inθ) = 2^n・(cosnθ + isinnθ)
ですから、ドモアブルにはそのまま当てはまらないけど
より上位の定理には当てはまります。
形としては
z1 = r1(cosθ1, isinθ1) (r1は非ゼロの実数, θ1は実数)
z2 = r2(cosθ2, isinθ2) (r2は非ゼロの実数, θ2は実数)
z1z2 = r1r2(cos(θ1 + θ2) + isin(θ1+θ2))
z1^n = r1^n(cos(nθ1) + isin(nθ1))
#複素数の掛け算は絶対値の積で偏角の和
が使いやすいと思います。
No.5
- 回答日時:
式変形に応用することは容易だけど
質問の「成り立たない」というのが
何を言いたいのかよくわからない。
ドモアブルは
(cosθ + i・sinθ)^n = cosnθ + i・sinnθ
だけど、どうなったら「成り立つ」と考えているのでしょう?
(r・cosθ + i・r・sinθ)^n = r^n(cosnθ + i・sinnθ)
で「成り立つ」と言えないなら成り立たないのでしょうけど
十分役に立ちます。質問の趣旨が見えないです。
数式の変形に役立つなら「成り立つ」でしょうか?
No.4
- 回答日時:
acosθ+aisinθ
の場合は
acosθ+aisinθ=a(cosθ+isinθ)
だから
(acosθ+aisinθ)^n
=(a^n)(cosθ+isinθ)^n
=(a^n){cos(nθ)+isin(nθ)}
acosθ+bisinθ
の場合は
x=acosθ
y=bsinθ
r=√(x^2+y^2)
(x/r)^2+(y/r)^2=1
だから
cosα=x/r
sinα=y/r
となるようなαがある
acosθ+bisinθ=r(cosα+isinα)
だから
(acosθ+bisinθ)^n
=(r^n)(cosα+isinα)^n
=(r^n){cos(nα)+isin(nα)}
No.2
- 回答日時:
極形式の積の性質を理解しておけば、ご質問の手がかりなります
性質:
複素数Z₁とZ₂の積Z₁Z₂は
その大きさが│Z₁││Z₂│となり
偏角は、Z₁の偏角とZ₂の偏角の和になる
これを抑えていれば
(rcosθ+irsinθ)ⁿ
={r(cosθ+isinθ)}ⁿ
は大きさがr、偏角がθである複素数n個分の積ですから、積はその大きさがrⁿとなり、偏角がnθとなることがすぐにわかると思います
すなわち
(rcosθ+irsinθ)ⁿ
={r(cosθ+isinθ)}ⁿ
=rⁿ(cosnθ+isinnθ)
そして、この式においてn=1としたものもがド・モアブルの定理となってますよね
No.1
- 回答日時:
(a*cosθ+a*i*sinθ)^n={a*(cosθ+i*sinθ)}^n=a^n*(cosθ+i*sinθ)^n
=a^n*{cos(nθ)+i*sin(nθ)}
となります。
定数が頭につけば全体がその定数のn乗倍になります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
sin2xの微分について
-
教えてください!!
-
力学・くさび
-
加法定理
-
図形 角度を求める問題
-
e^iθの大きさ
-
sinθ<tanθ
-
赤丸をつけたところで質問があ...
-
cos2分のπ= cos−2分のπ= sin2...
-
極座標変換について
-
極座標が(a,0)である点Aを...
-
加法定理の応用問題でcosα=√1-s...
-
次の関数を微分せよ y=sin^4 x ...
-
三角関数の問題を教えてください。
-
この問題の半径rと中心核αの扇...
-
二つの円の重なっている部分の面積
-
数学Iで分からない問題があります
-
三角関数の加法定理について
-
三角関数の合成について。 2cos...
-
θについて解けずに困っています。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
sin2xの微分について
-
教えてください!!
-
画像のように、マイナスをsinの...
-
e^iθの大きさ
-
tanθ=2分の1のときの sinθとcos...
-
式の導出過程を
-
アークサインの微分
-
θが鈍角のとき、sinθ=4分の3の...
-
三角関数 マイナス3分のπのsinθ...
-
複素数表示をフェーザ表示で表...
-
sinθ+cosθ=1/3のとき、次の式の...
-
高1 数学 sin cos tan の場所っ...
-
3辺の比率が3:4:5である直...
-
加法定理の応用問題でcosα=√1-s...
-
数学 2次曲線(楕円)の傾きの計...
-
急いでます! θが鈍角で、sinθ...
-
数学の問題で。。。0<θ<90 Sin...
-
次の関数を微分せよ y=sin^4 x ...
-
この問題の半径rと中心核αの扇...
-
力学・くさび
おすすめ情報