No.13
- 回答日時:
0<h<1
e^h
=lim[n→∞](1+h/n)^n
=lim[n→∞]1+h+Σ[k=2~n](nCk)(h/n)^k
≧1+h
e^h
=lim[n→∞](1+h/n)^n
=lim[n→∞]Σ[k=0~n](nCk)(h/n)^k
↓nCk≦n^kだから
≦lim[n→∞]Σ[k=0~n]h^k
↓初項1公比hの等比級数だから
=1/(1-h)
∴
1+h≦e^h≦1/(1-h)
h≦(e^h)-1≦1/(1-h)-1=h/(1-h)
1≦{(e^h)-1}/h≦1/(1-h)
1≦lim[h→+0]{(e^h)-1}/h≦lim[h→+0]1/(1-h)=1
∴
lim[h→+0]{(e^h)-1}/h=1
lim[h→-0]{(e^h)-1}/h
=lim[h→+0]{e^{-h}-1}/-h
=lim[h→+0]{(1/e^h)-1}/-h
=lim[h→+0]{1-(1/e^h)}/h
=lim[h→+0]{(e^h)-1}/(he^h)
=lim[h→+0]{(e^h)-1}/h
=1
∴
lim[h→0]{(e^h)-1}/h=1
(e^x)'
=lim[h→0](e^{x+h}-e^x)/h
=(e^x)lim[h→0]{(e^h)-1}/h
=e^x
>e^h
=lim[n→∞](1+h/n)^n
=lim[n→∞]1+h+Σ[k=2~n](nCk)(h/n)^k
ーー>
これはテイラー展開を使っている。
テイラー展開は微分から出てきたんだよ!
証明に証明されることを使っているんだよ。
ね!
No.11
- 回答日時:
0<h<1
1+h≦e^h
1-h≦e^{-h}
1+h≦e^h≦1/(1-h)
h≦(e^h)-1≦1/(1-h)-1=h/(1-h)
1≦{(e^h)-1}/h≦1/(1-h)
1≦lim[h→+0]{(e^h)-1}/h≦lim[h→+0]1/(1-h)=1
∴
lim[h→+0]{(e^h)-1}/h=1
lim[h→-0]{(e^h)-1}/h
=lim[h→+0]{e^{-h}-1}/-h
=lim[h→+0]{(1/e^h)-1}/-h
=lim[h→+0]{1-(1/e^h)}/h
=lim[h→+0]{(e^h)-1}/(he^h)
=lim[h→+0]{(e^h)-1}/h
=1
∴
lim[h→0]{(e^h)-1}/h=1
(e^x)'
=lim[h→0](e^{x+h}-e^x)/h
=(e^x)lim[h→0]{(e^h)-1}/h
=e^x
No.10
- 回答日時:
> どうすればいいんですか?
微分するというのは (d/dx) = lim[h→0] { f(x+h) - f(x) }/h という極限操作。
lim[h→0] lim[n→∞] (なんたら) = lim[n→∞] lim[h→0] (なんたら) という
lim の交換が成り立つ (なんたら) の条件を考えれば、
(d/dx) lim[n→∞] fn(x) = lim[n→∞] (d/dx) fn(x) が成り立つ条件も判る。
lim の交換は、どちらかの順番で内側の lim の収束が
外側の lim の変数について一様収束であれば成り立つことが知られている。
そのことを使って、 lim[n→∞] fn(x) の収束が x について一様なら
(d/dx) lim[n→∞] fn(x) = lim[n→∞] (d/dx) fn(x) が成り立つことも示せる。
この辺の話は、解析の教科書には必ず出てくる。
要するに、f(x) = lim[n→∞] (1+x/n)^n の収束が x について一様
であることを示めせばよい。ただし、その具体的な証明は、あまり易しくはない。
一様収束の定義には、εδ論法による基本的なものや、
lim[n→∞] sup[x] | (1+x/n)^n - f(x) | = 0 を使った特徴づけなどがあるが、
いづれにせよ n が大きいときの | (1+x/n)^n - f(x) | のふるまいを考察する。
これから f(x) を定義しようという場面では、 f(x) の持つ性質がまだほとんど
使えないため、これは難儀だ。
>lim の交換は、どちらかの順番で内側の lim の収束が
外側の lim の変数について一様収束であれば成り立つことが知られている。
そのことを使って、 lim[n→∞] fn(x) の収束が x について一様なら
(d/dx) lim[n→∞] fn(x) = lim[n→∞] (d/dx) fn(x) が成り立つことも示せる。
この辺の話は、解析の教科書には必ず出てくる。
>要するに、f(x) = lim[n→∞] (1+x/n)^n の収束が x について一様
であることを示めせばよい。ただし、その具体的な証明は、あまり易しくはない。
一様収束の定義には、εδ論法による基本的なものや、
lim[n→∞] sup[x] | (1+x/n)^n - f(x) | = 0 を使った特徴づけなどがあるが、
いづれにせよ n が大きいときの | (1+x/n)^n - f(x) | のふるまいを考察する。
これから f(x) を定義しようという場面では、 f(x) の持つ性質がまだほとんど
使えないため、これは難儀だ。
ーー>
なるへそ・・・
No.9
- 回答日時:
> こゆ証明はどうですか?
話の持っていき方は悪くない。
が、その式変形を証明にするのなら、
(d/dx) lim[n→∞] fn(x) = lim[n→∞] (d/dx) fn(x)
が成り立つための fn(x) の条件を挙げて、
fn(x) = (1+x/n)^n がそれを満たすことを示さねば
証明したことにならないよ。
No.8
- 回答日時:
微分を数列の極限で定義しなおすのは面倒なので
e の定義として
e = lim[t →0](1+t)^(1/t)
を採用すると
e^h -1 = t (t >-1)
h → 0 の時 t → 0
e^h -1 = t → h = log(t+1)
なので
(e^x)' = lim[h→0]{e^(x+h) - e^x}/h
= lim[h→0]e^x(e^h - 1)/h
= e^x・lim[t→0]t/log(t+1)
= e^x・1/log(lim[t→0](t+1)^(1/t))
= e^x・1/loge = e^x
e の定義として
y = a^x で x = 1 での微分係数 が a になる a を e
を採用すると
(e^x)' = lim[h→0]{e^(x+h) - e^x}/h
= e^(x-1)lim[h→0]{e^(1+h) - e^1}/h
= e^(x-1)・e = e^x
No.7
- 回答日時:
> それがテイラー展開なのよ!
exp(x) を「テイラー展開して」 = Σ[k=0→∞] (1/k!)x^k を得たのなら
循環論法になるが、
exp(x) = Σ[k=0→∞] (1/k!)x^k で exp(x) を定義して話を始めるぶんには
何の問題もない。
この立場をとる解析の教科書は多い。
高校流の e^x の定義は、関数ができあがるまでの道のりが長くて、
話がゴチャゴチャしてかなわん。
微分方程式 (d/dx) f(x) = f(x), f(1) = e の解のことを f(x) = exp(x) と定義する
立場すらある(たぶん、No.1 はこの話をしている)が、
この質問に対しては流石に木で鼻をくくったようなので、No.2 の立場をとってみた。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
小学1年生とか2年生に、「1+1ってなんで2になるの?」って聞かれたらどう答えます? 意外と難しいよ
数学
-
『笑わない数学 微分積分』のΔxについて
数学
-
半径1の円の面積がπになることを、積分を用いて示せという問題について質問です。この円はy=√1-x^
数学
-
-
4
オイラーの公式
数学
-
5
この問題解説お願いします。
数学
-
6
7の不思議
数学
-
7
ピタゴラスの定理(2)
数学
-
8
微分演算子の特殊解の求め方
数学
-
9
この式の電卓での叩き方を教えてください。
数学
-
10
高校数学についてで、帰納法をたとえば数列で使うときにn=kとおいて、kで示したいものが成り立つと仮定
数学
-
11
素数発見の新記録 実用面で何か意義があるものでしょうか
数学
-
12
ここでいうスカラーとはなにを意味しているのでしょうか。スカラーの意味があまりよくわかっていなのでベク
数学
-
13
答えは分かるのですが解き方が分かりません!高校数学
数学
-
14
大学数学 質問です 上限、下限の定義で疑問に思う点があります。 上限についてお話しします。 多くの上
数学
-
15
数学検定準一級を取得している人はどれくらいの数学力が担保されていると思いますか?
数学
-
16
0⁰再び
数学
-
17
問2なのですが、黄色い線から青い線になる計算がどうやってやったのか分かりません(´;ω;`)解説お願
数学
-
18
数学科1年のものです。 現在、線形代数、集合論、微積の3つを履修しているのですが、何点かお聞きしたい
数学
-
19
なぜこのように極座標に変換できるのか教えてください 変換の手順が知りたいです
数学
-
20
2x+4y-2 4x+18y+6 の連立方程式って(-3.1)であってますよね? 答え確認したら(3
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
複素数平面
-
線形代数で正方行列の性質について
-
線形代数の問題だと思う行列の...
-
この問題、解き方は理解したの...
-
行列の計算で
-
正規分布は一見、円と何も関係...
-
ノルム空間でノルムが連続であ...
-
数学の思考プロセスを理解する...
-
(0,1)=[0,1]?
-
純正ロイヤルストレートフラッ...
-
Quantam Mechanicsとは
-
60人で30000個持ってるのと200...
-
1/(s(s^2+2s+5))を部分分数分解...
-
limn→∞、10∧n=0?
-
2次関数
-
2m=8はわかるのですが、2n=6...
-
高校数学 ベクトルの計算
-
【問題】 2次関数 f(x)=x^2−2ax...
-
コピーしたい本のページ数
-
文字置き 必要条件・十分条件に...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急 a²b+a-b-1 の因数分解...
-
limn→∞、10∧n=0?
-
コピーしたい本のページ数
-
ルービックキューブと群論
-
この問題、解き方は理解したの...
-
三角形の面積は、底辺✕高さ÷2 ...
-
高校数学について
-
上が✖で下が〇になる理由が、何...
-
3つの無理数a,b,cでf(x)=x^3+ax...
-
文字置き 必要条件・十分条件に...
-
(0,1)=[0,1]?
-
数学の問題点を尋ねることがで...
-
写真は2変数関数の合成微分の公...
-
【問題】 f(x) = x^2 - 4a x + ...
-
1/(s(s^2+2s+5))を部分分数分解...
-
https://youtube.com/shorts/Kw...
-
青の吹き出しの何をどう考えれ...
-
数学の質問:関数の書き方
-
数ⅱ等式の証明について。 条件...
-
ランダウの記号のとある演算
おすすめ情報
テイラー展開はだめ!!!
そこに証明されるべきことがすでに使われているよ―――ん
つまり質問の微分則が・・・
lim(n->∞)(1+x/n)^n
eの定義式がつかわれているよーーん「
ここね!
https://w3e.kanazawa-it.ac.jp/math/category/othe …
それがテイラー展開なのよ!
>exp(x) = Σ[k=0→∞] (1/k!)x^k で exp(x) を定義して話を始めるぶんには
何の問題もない。
この立場をとる解析の教科書は多い。
ーー>
なるほど・・・
アザッス!
ありがとう・・・
なるほどです・・・
では、こゆのはどですか?
こゆ証明はどうですか?
なるほどです・・・
こゆのはどうですか?
なるほどです
どうすればいいんですか?