積分の知識を失って早や数年、どなたか以下の面積の求め方を教えてください。

円:原点Oを中心とする、半径aの円
直線:X=k(-a<=k<=a)

この直線によって切り取られる円の左側の面積Sをkであらわしたいんです。
よろしくお願いいたします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

積分で解くのでしたら、以下のように解けばよいのではないでしょうか?文だけ読んでも解りにくいので、紙に書き出してみて下さい。

図も描いてみて下さい。

まず、円は原点中心、半径aの円なので、X軸よりも上側の円周は、次の式で表されます。
x^2+y^2=a^2 移項してyについて解くと y=√(a^2-x^2) (今はx軸の上側だけ考えているので『±』は付けません)

よって,面積Sを求める積分の式は
S=2∫(-a~k){√(a^2-x^2)}dx   ・・・(1) (-aが下で,kが上です) (ただの積分だと上だけ求めて終わりになってしまうので、2倍します)

ここで、置換積分をします。x=a・cosθ ・・・(2) と置いて,すべてをθで表すと、
√(a^2-x^2)=√(a^2-a^2・cos^2θ)=a・sinθ (sin^2θ=1-cos^2θより)
x=-aのとき,-a=a・cosθより, θ=π 
x=k のとき,k=a・cosθより, θ=arccosθ(k/a) (cosの逆関数)
(2)の両辺をθで微分すると,dx/dθ=-a・sinθ  よって,dx=-a・sinθ・dθ

以上より、(1)式は、次のように変形できます。

S=2∫(π~arccos(k/a))a・sinθ(-a・sinθ・dθ)
=-2a^2∫(π~arccos(k/a))(sinθ)^2dθ
=-a^2∫(π~arccos(k/a))(1-cos2θ)dθ  (cos2θ=1-2(sin2θ)^より)
=a^2[θ-(1/2)sin2θ](arccos(k/a)~π)  (-を消して積分区間を逆転)
=π・a^2-a^2・arccos(k/a)+(1/2)a^2・sin{2・arccos(k/a)}
=π・a^2-a^2・arccos(k/a)+k√(a^2-k^2)  

※ (1/2)a^2・sin{2・arccos(k/a)} は,a=a、頂角=2・arccos(k/a)の二等辺三角形の面積を表しています。
要は、円にx=kの直線を引いて,その交点(P、Qとおく)と原点Oを結んだときの二等辺三角形OPQ。
三平方の定理でPQの距離を求めると底辺PQ=2・√(a^2-k^2),高さは k です。
よってΔOPQ=(1/2)・k・2・√(a^2-k^2)=k√(a^2-k^2)

nagataさんの考え方は正しいと思いますが、扇形の面積は 2・π・a^2・{arccos(k/a)/2π}=a^2・arccos(k/a) です。
たぶん,(中心角/360度)のところで,360度=πとしてしまったミスなのでは・・・。360度=2πなので、こうなると思います。

あと、-a≦k≦0のときも、nagataさんの式は成り立ちます。kがマイナスだと、円の左側の面積=円ー扇形ー三角形 になりますが,
S=a^2・π-2a^2・arccos(k/a)+k√(a^2-k^2) の式で +k√(a^2-k^2) の部分は符号が(-)になるので,結局引いてるここと同じになります。

長々と申し訳ありませんでした。
    • good
    • 0
この回答へのお礼

丁寧な解答を頂き誠に有難うございました。助かりました。

お礼日時:2002/02/01 10:57

0<k<=aの時


円の左側の面積=円ー右側の面積
円の左側の面積=円ー(扇形ー三角形)
円の左側の面積=円ー扇形+三角形
S=a^2・π-2a^2・arccos(k/a)+k√(a^2-k^2)
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QNZドル為替動向

最近、円がNZドルに対して強くなっています。
半年前から三ヶ月前までは
1NZドル81~85円くらいで動いていたのですが
最近円高が加速し80円を突破、一気に75円くらいまでに
なっています。
これは何かNZで起こっているのでしょうか?
NZは景気落ち込んでいるのか利下げをしてますよね?
(預金金利が下がったので勝手にそう思ってます。)
それにより通貨の魅力が下がったのが原因でしょうか?
全体的に見ても円は
NZだけでなくUSや他の通貨に対しても
高くなっているようです。

特にNZドル
の今後の動向はどうなるのでしょうか??
もちろん、為替を先見を正確に
予告するのは不可能ですが
詳しい方がいらっしゃいましたら
ご意見をいただけないでしょうか??

Aベストアンサー

1ドル40円台前半の時代にNZD建て外貨預金を経験しているので、
怖いものしらずです。
個人的には、1NZD=65~75円のレンジが
妥当で、今はむしろ円安の名残なのかと
思っています。

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

Q豪ドル/円のよい為替情報サイトありませんか。

豪ドル/円のよい為替情報サイトありませんでしょうか。

ここ数日、豪ドル/円が円安気味です、
本日は豪の経済消費者指数がよい発表があったようです、
そのためなのか、円安更新中です。

豪ドル/円の為替を見極めるためによい為替情報サイトありませんでしょうか。要人の発言等も分かると助かります。

Aベストアンサー

メジャーな通貨ではないので無料の予想サイトなどはあまりないような気がします。

一応、
http://www.bk.mufg.jp/rept_mkt/gaitame/index.htm
ここの今月の為替相場見通し、今週の為替相場見通しで月間、週間の予想レンジが見られます(内容はかなりアバウトですが)。
後、パートナーズFXに口座を開くと、毎日だいまん氏のレポートが見られるようです。
僕が知ってるのはこれくらいです。

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。

Q株式市場と為替の関係について 新聞等で、 日経平均上昇→円安ドル高 日経平均下落→円高ドル安

株式市場と為替の関係について

新聞等で、

日経平均上昇→円安ドル高
日経平均下落→円高ドル安

NYダウ上昇→円安ドル高
NYダウ下落→円高ドル安

という相関関係が前提とされている記事を見かけるのですが、そのメカニズムがわかりません。教えてください。

Aベストアンサー

Moryouyouです。

端折った書き方になってしまいました。
すみません。
諸説あるのですが、海外投資家やファンド
は、日本株の株価下落のリスクヘッジを
するため証拠金などの信用取引に必要な
資金をドル資金から(引き上げて)円資金
にして、いわば追証をするということです。
そのためドル売り円買いとなり円高となる。
といわれています。

逆に日本株高となる場合は、そうした円
ポジションは低金利、マイナス金利の
状況で余計な資金を円でおいておくのは
機会損失となるため、ドルに買い戻す
流れ(ドル高円安)となるということです。

Q数学Ⅱ 円と直線問、円C: x∧2+y∧2-4x-2y+3=0直線l: y=-x+k が異

数学Ⅱ 円と直線

問、円C: x∧2+y∧2-4x-2y+3=0
直線l: y=-x+k が異なる2点で交わるkの範囲は
「1〈k〈5」
また、lがCによって切り取られる線分の長さが2であるとき、定数kの値を求めよ。

解答、Cの中心をC,
Cとl の2つの交点をA, B,
線分ABの中点をM とする。

CM=√AC∧2-AM∧2=1

よって |k-3|/√2 =1

k=3±√2 。。

|k-3|/√2 =1 ←これどういう意味?

Aベストアンサー

|k-3|/√2 =1 ←これどういう意味?

これは、《 点と直線の距離の公式 》 を使っています。


点A(x₁,y₁) と 直線 ax+by+c=0 との距離dは

d=│ax₁+by₁+c│/√(a^2+b^2)

です。

x∧2+y∧2-4x-2y+3=0
(x-2)^2+(y-1)^2=2
より、円Cの中心は、点(2,1) です。
直線l を式変形して、
-x-y+k=0
となり、
これで、点(2,1) と直線 -x-y+k=0 との距離dは、
d=│-2-1+k│/√{(-1)^2+(-1)^2}=│k-3│/√2 ・・・・・①
になります。

また、Cの中心をC,
Cとl の2つの交点をA, B,
線分ABの中点をM とする。
と、
三角形CAMは、∠CMA=90° の直角三角形だから、三平方の定理より
CM=√AC∧2-AM∧2=1 ・・・・・②
になります。

d=CM なので、 ① と ② より
│k-3│/√2=1
になります。

Q為替相場(円/ドル)についての問題

為替相場(円/ドル)について、これから年末にかけてどう動くか、あなたの予想とその理由を教えてください。

Aベストアンサー

日銀は年内中は政策金利を現状維持するとのうわさがあります。真に受けるとすれば、外国の金利政策が影響を与えてくるでしょう。チラッと見たニュースですとアメリカFRBは次の利下げをいつするかということに関心が向けられているそうです。そうすると、日本の政策金利とアメリカの政策金利の差が縮まるので円高に振れそうですが、前回の例でアメリカの政策金利引下げを歓迎しドル買われました。今回もそのような現象とまでは行かないにしても、極端な円高に振れることは少なくともないと思います。

政策金利以外にも円キャリートレードの再燃もありえるので、円高要素自体は総合的に見ると少なそうに思います。

よって、日米の為替レートは現状~円安という感じになるでしょう。

なお、私ど素人の意見なので、ご参考までということでご了承ください。

Q図のように、直線y=1/2x+a(a>0)が直線y=2xと交わる点をA

図のように、直線y=1/2x+a(a>0)が直線y=2xと交わる点をA、x軸、y軸と交わる点をそれぞれB、Cとするとき、点Aのy座標が12のとき、線分BOの長さを求めなさい。ただし、座標の1メモリを1cmとする。

という問題です。教えてください。

Aベストアンサー

まず、点Aの座標を考えます
点A(Ax,12)と置きます
次に点Aはy=2x上の点なのでここにy=12を代入すると
12=2x
x=6
よって、点Aは(6,12)となります
次に、y=(1/2)x+aの切片aを求めます
点A(6,12)を通るので、これを式y=(1/2)x+aに代入すると
12=3+a
a=9
よって切片9となります
後はBの座標を出すのみで、B(Bx,0)とおくとy=(1/2)x+9に代入して
0=(1/2)x+9
(1/2)x=-9
x=-18
よってB(-18,0)
あとは簡単な話で、原点からの距離なので答えは18cm

Q為替相場(円/ドル)についての質問

為替相場(円/ドル)について、これから年末にかけてどう動くか、あなたの予想とその理由を教えてください。

Aベストアンサー

季節的な要因から米ドルは年末から上昇する傾向が強いです。問題は、アメリカの政策金利が緩和方向にあって、金利イールドカーブが逆ザヤ状態になっているため、対日本円でも金利差からみるとそれ程魅力はないです。ユーロの動向次第では120円台の定着が困難になるように予想します。

Q材料力学(数学)の問題です。 0<x<bでy=ax、b<x<2bでy=ab、2b<x<3bでy=-a

材料力学(数学)の問題です。

0<x<bでy=ax、b<x<2bでy=ab、2b<x<3bでy=-ax+3abである関数のグラフを描け。a、bは正の定数とする。
この問題の解き方を教えて下さい。わかりやすく解説してくだされば有難いです。

Aベストアンサー

0<x<bでy=ax
これは単なる比例です。aが正の定数なので、0を通る右上がりの直線ですね。

b<x<2bでy=ab
a,bが定数なので、abも定数です。
x=bの時「y=ax」=「y=ab」であるので、
y=axのx=bにおけるyから横一直線ですね。

2b<x<3bでy=-ax+3ab
これは最初の比例のグラフと傾きが正負逆になっていますね。
x=2bの時y=-2ab+3ab=ab、
x=3bの時y=-3ab+3ab=0
となる右下がりの直線ですね。

x=0,b,2b,3bは範囲外となります。
グラフを描く時に境界部分で○とするか●とするか間違わないように。


人気Q&Aランキング

おすすめ情報