|A|=m,|B|=n(m<_n)のときの単射f:A→Bの総数を求めよ

この考え方もわかりません どなたか教えてください

A 回答 (3件)

>どうしてf(a(m))の取りうる値はn-m+1通り なのですか?


単写、という言葉の意味は分かりますよね?念のため書きますが
 a≠bならばf(a)≠f(b)
という意味です。

f(a(1))のとりうる値の種類はBの要素数のn個です。
f(a(2))のとりうる値の種類は集合Bからf(a(1))の値として選んだ値を除いた集合の個数であるn-1個です。
f(a(3))のとりうる値の種類は「集合Bからf(a(1))の値として選んだ値を除いた集合」から(a(2))の値として選んだ値を除いた集合の個数である(n-1)-1=n-2個です。
f(a(3))のとりうる値の種類は…

ということをa(m)まで繰り返していけば、a(m)のとりうる値の種類がn-m+1個になることが分かります。

なお、上の「…」で省略した部分が分からない、といわれても、私にはそこをやっていく根気はありません。
    • good
    • 0

 


  これは単射の問題なので、そのまま考えます。m<=nというのが条件だと理解します。
 
  Bの要素のなかで、n-m個が、写像とは関係のない、対応要素のない要素になります。従って、これを排除して考えるのがよいことになります。こういうn-m要素を外した、Bの部分集合の異なる可能性の数は、nから任意にn-m個の要素を選ぶ組み合わせです。これは、nCn-mです。具体的には、n(n-1)(n-2)……(n-m+1)/m!=nPn-m/m!=rです。(rは適当な文字です)。
 
  要素が違うr個の集合があるということになり、濃度は、Aと同じです。
 
  このr個の集合のそれぞれに対し,Aからの単射があることになります。その単射の組み合わせ数は、m!となります。
 
  先のr個の集合は、みな異なる集合です。何故なら、どれも、最低、一個の要素が食い違っているからです。つまり、仮にBから、{a,b}要素と{a,c}要素を除いた二つの集合を考えると、先にはcがあるがbがなく、後は、bはあるがcがないという風に違った集合です。
 
  r個の集合をBrと表現すると(r=1,2,3……)、A→Brの単射は、いかなる組み合わせを造っても、同じものはないということになります。何故なら、Brは、rが違えば、それぞれ別の集合だからです。
 
  一般に別個のm個の要素からなる集合から、同じように、別個のm個の集合への単射の数は、すでに上でも述べたように、m!です。従って、Aに対するBrの数をかければ、これが、問題の答えです。すなわち、(nCn-m)X(m!)です。ところで、nCn-m というのは、nPn-m/m!です。これにm!をかけるのですから、答えは、nPn-m です。
 
  回答: nP(n-m)
 
    • good
    • 1

http://oshiete1.goo.ne.jp/kotaeru.php3?q=209227
のほうでも書きましたが、|A|はAの要素数という意味でしょうか?
ここではそうだと解釈します。

A={a(1),a(2),…,a(m)}とします。すると、fは単車なので、
 f(a(1))の取りうる値はn通り、
 f(a(2))の取りうる値はn-1通り、
  …
 f(a(m))の取りうる値はn-m+1通り、
となります。これを掛け合わせると、
 n*(n-1)*…*(n-m+1)={n*(n-1)*…*1}/{(n-m)*(n-m-1)*…*1}
          =n!/(n-m)!
          =nP(n-m)
となります(ただし、nP(n-m)のnおよびn-mは下添字)。

この回答への補足

どうしてf(a(m))の取りうる値はn-m+1通り なのですか?

補足日時:2002/01/31 23:25
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QA,Bをn次正方行列とする場合、|A B B A|=|A+B||A-

A,Bをn次正方行列とする場合、|A B B A|=|A+B||A-B|を証明したいのですが。

Aベストアンサー

最初、質問の意味が全く解らなかったのですが、
次の質問 http://oshiete.goo.ne.jp/qa/5907606.html
と見くらべると、どうやら、2n 次の行列式
|A  B|
|B  A|
のことを言っているようですね。それなら、値は
|A+B||A-B|
と等しくなります。なるほどね。

行列式の基本変形をしてみましょう。
|A  B|
|B  A|
の第 n+k 列(k = 1 … n) を、それぞれ第 k 列へ加えると、
|A+B  B|
|B+A  A|
となります。更に、
第 k 列(k = 1 … n) を、それぞれ第 n+k 列から引くと、
|A+B  B|
|O  A-B|
です。

このブロック三角行列の行列式が、行列式の積
|A+B||A-B|
になることは、Σ を使った行列式の表示
(http://www.snap-tck.com/room04/c01/matrix/matrix08.html
のような…)に、
左下の 0 となる成分を代入してみれば、確認できます。

Q|a|=2,|b|=1,a・b=√2 を満たす2つのベクトルa,b,が

|a|=2,|b|=1,a・b=√2 を満たす2つのベクトルa,b,があたえられている時、次の極限値を求めなさい。lim_(x→0) {|a+xb|-|a|}/x
多分間違えていると思いまっすが、|a+xb|^2を |a|=2,|b|=1,a・b=√2を代入して、(x+√2)^2+2 としてみましたが、この後、どうしていいか、まったくわかりません。よろしくお願いします。解答は、√2/2でした。途中式もお願いします。

Aベストアンサー

(|a+xb|-|a|)/x
=(|a+xb|+|a|)(|a+xb|-|a|)/(x(|a+xb|+|a|))
=(|a+xb|^2-|a|^2)/(x(|a+xb|+|a|))
=(|a|^2+2x(a・b)+x^2|b|^2-|a|^2)/(x(|a+xb|+|a|))
=(2(a・b)+x)/(|a+xb|+|a|)
=(2√2+x)/(|a+xb|+2)

lim_(x→0)(|a+xb|-|a|)/x
=lim_(x→0)(2√2+x)/(|a+xb|+2)
=√2/2

Q定数a、bにて|a|/|b|=|a/b|

は成り立ちますか?

Aベストアンサー

b=0でなければ成り立ちますよ

QΣ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる

こんにちは。

[問]{φ_n(x)}を[a,b]での直交関数列とせよ。級数Σ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる事を示せ。
[証]
仮定より[a,b]でΣ[n=1..∞]a_nφ_n(x)=f(x) …(1)と言える。
c_k (k=0,1,2,…)をf(x)の{φ_n(x)}に於ける[a,b]でのフーリエ係数とすると
フーリエ係数の定義から
c_k=∫[a..b]f(x)φ_k(x)dx/∫[a..b](φ_k(x))^2dx=∫[a...b](Σ[n=1..∞]a_nφ_n)φ_k(x)dx/∫[a..b](φ_k(x))^2dx (∵(1))
=∫[a...b]a_kφ_kφ_k(x)dx/∫[a..b](φ_k(x))^2dx(∵{φ_n(x)}は直交)
=a_k∫[a...b](φ_k(x))^2dx/∫[a..b](φ_k(x))^2dx
=a_k
となり,一様収束である事の条件を使わなかったのですがこれで正しいのでしょうか?

こんにちは。

[問]{φ_n(x)}を[a,b]での直交関数列とせよ。級数Σ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる事を示せ。
[証]
仮定より[a,b]でΣ[n=1..∞]a_nφ_n(x)=f(x) …(1)と言える。
c_k (k=0,1,2,…)をf(x)の{φ_n(x)}に於ける[a,b]でのフーリエ係数とすると
フーリエ係数の定義から
c_k=∫[a..b]f(x)φ_k(x)dx/∫[a..b](φ_k(x))^2dx=∫[a...b](Σ[n=1..∞]a_nφ_n)φ_k(x)dx/∫[a..b](φ_k(x))^2dx (∵(1))
=∫[a...b]a_kφ_kφ_k(x)dx/∫[a..b](φ_k(x))^2dx(∵{φ_n(x)...続きを読む

Aベストアンサー

そのままでは直交性
∫[a...b]φ_n(x)φ_k(x)dx=0 (n≠k)
を利用できないので、Σと∫を入れ換えないといけないのです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報