本などでよく時間経過にともなう相関関数を計算されてありますが、
これにより何がわかるのでしょうか?
例えば速度自己相関関数など

このQ&Aに関連する最新のQ&A

A 回答 (4件)

まず、相関係数についてですが、E[{x(t)-mean(x)}{y(t)-mean(y)}]のことです。


つまり、二つの関数x(t)とy(t)がどれくらい似ているかということを、-1~1で正規化した数値で表すものです。
相関関数には自己相関関数と相互相関関数があります。自己相関関数は、
E[{x(t)-mean(x)}{x(t-k)-mean(x)}]で、ある関数x(t)とx(t-k)がどれくらい似ているか?ということをkを色々な値で調べたものです。横軸・・・k、縦軸・・・相関係数の値のグラフが結果として提示されます。つまり、k=T,2T,3T,,,,NTで相関関数が大きな値を取るとき、周期がTという事がわかります。
相互相関関数はE[{x(t)-mean(x)}{y(t-k)-mean(y)}]で、x(t)とy(t-k)を比べたものです。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。なるほど....

お礼日時:2001/01/31 14:27

相関関数の応用。


 たとえばドブの中を汚水が流れている。ドブの上流Aと下流Bで水の汚さを計測してそれぞれ時系列データFa(t), Fb(t)を得たとします。どちらもノイズを多量に含んでいますから、突き合わせてみても一見はっきりした関係がない。そこで相互相関関数c(s) = E[ Fa(t)Fb(t+s)]を計算して、ピークがs=s0の位置に現れたとする。すると、(A,B間の距離)/s0 がドブの平均流速、とわかるわけですね。
 同じように、ビルの谷間で選挙演説をがなっている。その音には周りのビルからの反射音も重なっている筈です。そこで音を時系列データとして自己相関関数c(s)を求めてみる。s=0のピークは当たり前ですが、そのほかにもいくつもピークs1,s2,....が現れるはずです。これらに音速をかけ算すれば主要な反射物までの距離がわかります。(この結果を利用して反射音の影響を消す、というのはデータ処理の次の段階ですね。)
 自己相関は周期性の検出のほか、その時系列データがどういうモデルで近似できるかを調べるのにも用います。いろいろな、性質が分かっている(数学的に定義された)ランダム信号源の自己相関関数とパターンが似ているかどうか比べてみる訳ですね。波形そのものをくらべてもよく分からないので、自己相関関数やパワースペクトラムを使って比べます。
    • good
    • 0
この回答へのお礼

ご回答有り難うございます。そういったことまでわかるとは勉強になりました。

お礼日時:2001/01/31 14:29

統計力学がお好きなようなので(?),統計力学の言葉で言うなら,


ある粒子の速さ v(t) に注目して
u(t) = v(t) - v0 という平均値 v0 からのずれを作り,
C(t) = <u(t)u(0)>
という統計平均を速度の自己相関関数といいます.
粒子はいっぱいあるから,2つの u を違う粒子のものにとっても良いわけですが,
同じ粒子のものに取ったので「自己」というのです.

時間がたてば,u が平均値に落ち着くでしょうから,
通常は C(t) は t→∞ でゼロになります.
ゼロへ近づく近づき方が問題で
C(t) ~ exp(-t/τ) の形が多いのですが(τは緩和時間と呼ばれる)
C(t) ~ t^(-a) や C(t) ~ exp{-(t/τ)^b}
などの形のこともあります.

速度の記憶がどの程度残っているかを表す量ですね.
    • good
    • 0
この回答へのお礼

ご回答有り難うございます。C(t)はtを長く計算すると、いずれ0に落ち着きます。時間t0での速度ベクトルの大きさを|v(t0)|とし時間t1での速度ベクトルの大きさを|v(t1)|とし両者のベクトル間の角度をθとするとC(t)が0になるのは|v(t1)|v(t0)|cosθ=0の時で、θ=90度の時だけのような気がします。すなわち、tが大きいときずっと0に落ち着くのが不思議です。

お礼日時:2001/01/31 14:46

大回答の補足をするのは恐れ多いのですが、質問者の方の補足が


気になりましたので、簡単な補足を、、、。

>>両者のベクトル間の角度をθとするとC(t)が0になるのは
>>|v(t1)|v(t0)|cosθ=0の時で、
>>θ=90度の時だけのような気がします。

ということですが、ベクトルの相関関数は、各成分毎について
計算されます。例えば、<Vx(t1)Vx(t0)>とか、<Vx(t1)Vy(t0)>
のようにです。ですから、一般には相関関数はスカラー量ではなく、
3×3成分の行列となります。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q自己相関性及び自己相関関数について教えて下さい。

自己相関性とは、つまりは自己相関性が良いほどフーリエ変換したときに、周波数の大きな領域にスペクトルが多く現れ、これが悪いほど周波数の低い領域に現れる、というものでよろしいのでしょうか?

自己相関関数とは
http://www.ymec.com/hp/signal/acf.htm
このページにありますように、遅延時間を変えてプロットすることで、コンサートホールなどでの音響効果についての計算を行うことが出来るものですよね?
これって電子回路ではどういった利用法がなされているのでしょうか?

よろしくお願いいたします。

Aベストアンサー

>フーリエ変換したときに、周波数の大きな領域にスペクトルが多く現れ、これが悪いほど周波数の低い領域に現れる、というものでよろしいのでしょうか?

違います。自己相関は元になる波形の時間をずらして元の波形に重ねた時にどれぐらい似ているかを表わしています。
ずらす時間がゼロの場合はもとの波形と完全に一致しますから相関値は必ず1になります。
元の信号が正弦波の場合には周期の整数倍だけずらすと元の波形と同じになるので相関値は周期的に1になります。

コンサートホールなどで特定の周波数で残響が長い場合ではその周期に相当する時間差のところにピークが現れます。
ピーク値が大きく繰り返しの回数が大きいほどその周波数で共振していることが分かります。

実用的な利用方法については特許を調べるといいでしょう。
特許を調べるには「特許電子図書館」を利用できます。
参考URLの「初心者向け検索」で検索します。
キーワードが「自己相関」では件数が1000件を超えて表示が出来ないので
適当なキーワードを付け加えてください。
自動車、楽器、X線、ノイズ、等、面白い応用例が見つかるかもしれません。

参考URL:http://www.ipdl.inpit.go.jp/homepg.ipdl

>フーリエ変換したときに、周波数の大きな領域にスペクトルが多く現れ、これが悪いほど周波数の低い領域に現れる、というものでよろしいのでしょうか?

違います。自己相関は元になる波形の時間をずらして元の波形に重ねた時にどれぐらい似ているかを表わしています。
ずらす時間がゼロの場合はもとの波形と完全に一致しますから相関値は必ず1になります。
元の信号が正弦波の場合には周期の整数倍だけずらすと元の波形と同じになるので相関値は周期的に1になります。

コンサートホールなどで特定の周...続きを読む

Q自己相関と相互相関

相互相関関数と自己相関関数の相関係数の違いはどういうことなのでしょうか。
相互相関は異なるデータの相関、自己相関は1つのデータの時間差の相関ということなのですか?

Aベストアンサー

簡単に言うと

自己相関:時間差τ分過去の自分自身の波形は現在の自分自身にどれだけ似ているか?たとえばτがある時間ごとに自己相関が大きくなるということは元の波形はその時間での周期性を持っていることになります.

相互相関:別の波形と思っている信号がどれだけ似ているかを表します.片方に正弦波を持ちいれば,フーリエ変換になります.


人気Q&Aランキング

おすすめ情報