ある硬貨を8回投げたところ、表が6回裏が2回出た。この硬貨について、表が出る確率は1/2であるという仮説を有意水準10%で検定せよ。
という問題なのですが、
解き方として、8Ck(1/2)^k(1/2)^8-k
という式を立て、k=6のところの値、つまり0.109・・・と有意水準の0.1を比べた結果、1/2であるという仮説は棄却されない。よって、仮説は有意であるという答えになったのですが、これであっているのでしょうか?
いま、両側検定で計算していますがこれでよろしいですか?片側検定なのでしょうか・・・。
よろしくお願いします。
No.2ベストアンサー
- 回答日時:
>両側検定で計算していますがこれでよろしいですか?片側検定なのでしょうか・・・。
これは問題設定次第です。
「1/2なのかそうじゃないのか」
検定したい場合は両側検定を用います。
また、
「1/2以上なのかそうじゃないのか」
検定したい場合は片側検定を使うだけ、です。
どちらで検定したいのか、はukiuki2008さん次第なのです。
さて、ところで重大なお話をしておきます。
例題の検定は「二項検定」と呼ばれますが、これは
「××で無い」
事を確率的に証明する為のモノで、
「××である」
事を確率的に証明する為のモノではないんです。
従って、検定結果次第では
「コインの表が出る確率は1/2ではない」
事は(ある確率で)言明出来ますが、反面
「コインの表が出る確率は1/2である」
って事は決して言えません。ここをお間違いの無いように。
すなわち、「有意である」と言う表現は「確率が1/2でない」時に使える表現であって、逆はできないのです。
回答ありがとうございます。
なるほど、奥が深いですね。両側検定と片側検定の使い分け方、参考になります。また、有意であるという言葉の使い方も勉強になりました。ありがとうございます。この問題は捉え方によっていくつか答えが出そうですね。
No.1
- 回答日時:
(1) > 8Ck(1/2)^k(1/2)^8-k
つまり8Ck(1/2)^8。これは「帰無仮説を前提にした場合、8回中丁度k回表がでる確率」の計算としては合ってます。でもね、N回投げて丁度aN回表が出る確率は、Nが大きくなれば幾らでも小さくなって行きますよ?だからそれじゃ検定になりません。計算すべきは「帰無仮説を前提にした場合、8回中6回以上表がでる確率」です。
(2) > 仮説は棄却されない。よって、仮説は有意である
「仮説は有意である」ってどういう意味でしょうか。帰無仮説は、棄却できない場合には「無に帰す」。つまり、「何も言えない。」のです。
回答ありがとうございます。
そうですね、6回以上で計算しなくてはなりませんね。単純なミスでした。すみません。6回以上の和を求めて、両側検定で0.1と比較するのでよろしいのでしょうか。両側検定で行った場合、意味としては表が出やすいとはいえないということですよね?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
効果量のマイナス表示に関して
-
調査結果は、標準誤差率が何%...
-
統計学のP検定とt検定につい...
-
【統計】2つデータが似ている...
-
shirley-williamsの方法とsteel...
-
棄却楕円検定
-
検定で出てしまった有意差を認...
-
統計のt検定について
-
統計学「母平均の検定」
-
検定の仕方教えて
-
母集団の違う2つの平均値の優...
-
カイ2乗検定って何??;;
-
同等性の検定について
-
統計学的に信頼できるサンプル...
-
t検定・Χ二乗検定について t...
-
t検定における有意差ありとは?
-
英語論文に出てくる「independe...
-
有意差が無いことを証明(危険...
-
統計学の問題なんですが・・・
-
2つのサイコロの目の合計が偶数...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
効果量のマイナス表示に関して
-
調査結果は、標準誤差率が何%...
-
p値の計算式
-
統計学のP検定とt検定につい...
-
統計のt検定について
-
英語論文に出てくる「independe...
-
統計学的に信頼できるサンプル...
-
Mann-WhitneyのU検定をspss統計...
-
サンプルサイズの大きく違うF検定
-
母集団の違う2つの平均値の優...
-
最小有意差とは?
-
平均値、標準偏差、変動係数に...
-
Mann-Whitney検定を採用できる2...
-
有意差について
-
2群間平均の差の検定 差が“な...
-
統計論文:ノンパラメトリック...
-
スミルノフ・グラブス検定の有...
-
回帰曲線の有意差の検定
-
有意差が無いことを証明(危険...
-
Excelでスミルノフ・グラッブス...
おすすめ情報