
1.SPSSで多変量分散分析を行いましたところ、「Boxの共分散行列の等質性の検定」が有意になってしまいました。調べたところ、共分散行列の等質性は多変量分散分析を行う場合の前提条件のひとつであるということまではわかったのですが、その条件が整わない場合にどのような検定手法をとるべきなのかということがわかりませんでした。
2.上記に加えまして、「Leveneの誤差分散の等質性検定」でもいくつかの項目が有意な結果となりました(この場合、複数の独立変数を想定したノンパラメトリック検定を行うのでしょうか?)
以上の2点を考慮した場合、どのような検定手法をとることになるのでしょうか?
ぜひよろしくお願いします。
No.1ベストアンサー
- 回答日時:
> 「Boxの共分散行列の等質性の検定」が有意になってしまいました。
とありますが、有意水準はどの程度に設定したのですか?いわゆる事前検定では0.05などとする必要はなく、0.25程度に設定しておけばよいでしょう。
例えば、正規性の検討にしても、完全に正規分布に従っている必要は全くなく、ある程度正規分布に近似しているだろうという程度で構わないのです(その境界線は場合によって異なりますが)。
この回答への補足
回答ありがとうございます。
有意水準は参照したテキストでは0.05でしたので、それを参考にしていました。しかし、出力された有意確率が0.000でしたので、有意水準を変更したとしても厳しいかなと思います。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 t検定について教えてください 2 2023/02/23 16:35
- 統計学 【統計】効果検証としてのT検定・F検定 5 2022/10/21 11:08
- 統計学 標本分散の求め方 1 2022/11/18 19:29
- 統計学 統計でこの問題わかる方、教えて下さいm(_ _)m 「会社に就職した。出張でルートAで行くと、31 2 2022/07/17 09:44
- 一戸建て アスベスト物件解体に必要なこと 2 2023/07/12 07:10
- 大学・短大 大学 統計学 1 2022/09/14 11:27
- 統計学 一変量分析(度数分布表)は、結果をもとに特に検定せずに断定してもよいですか? 7 2022/11/24 23:20
- 統計学 加重最小二乗法=①「変数を自然対数変換」=②「誤差項の分散の逆数を重み付け」? 8 2022/11/26 11:15
- 統計学 不偏分散について 3 2022/03/29 15:57
- 統計学 統計学を学んでいるものです。 区間推定や検定において度々 t分布やカイ二乗分布、F分布が現れますが、 6 2023/02/15 14:26
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
正規分布でない対象にウェルチ...
-
サンプル数の異なる2群間にお...
-
ジッタ(jitter)を算出したい
-
下の対数表示のグラフから低域...
-
EXCELにてローパスフィルタを作...
-
数3の問題です y=x+cosx 0≦x≦2π...
-
統計の予習でやり方がよくわか...
-
エクセルのグラフから半値幅を...
-
パイロットサンプルって何ですか?
-
検量線の決定係数について
-
この問題がわかりません。sinの...
-
信号処理系の分野に詳しい方に...
-
統計分析で小規模データから全...
-
この問題を教えてください 1000...
-
t検定について教えてください
-
死傷者数と死者数の違いって何...
-
エミッタ接地トランジスタの静...
-
二つのデータの分散からブール...
-
物理学実験のグラフの描き方に...
-
こんにちは。統計学について質...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
サンプル数の異なる2群間にお...
-
EXCELにてローパスフィルタを作...
-
エクセルのグラフから半値幅を...
-
検量線の決定係数について
-
下の対数表示のグラフから低域...
-
線形なグラフとはひとくちに言...
-
パイロットサンプルって何ですか?
-
最小二乗法を反比例の式を元に...
-
アンケートの集計分析の基礎(...
-
心理学の統計について
-
変化率のみで、有意差の検定は...
-
エクセルの統計でχ二乗検定の結...
-
グラフの"eye guide"について
-
【統計】有意に「高い」?「低...
-
統計について
-
片対数グラフで…
-
理科のグラフで、直線と曲線の...
-
一元配置分散分析のp値が0になる
-
死傷者数と死者数の違いって何...
-
統計学の質問【帰無仮説】 B大...
おすすめ情報