その解き方をやさしく御教授してください。
どうぞよろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

円柱は完全に横倒しになっているんだとすれば、円柱のどこを切っても水深は同じですが、そういうご質問と解釈して良いのでしょうか?



 実際に図を描きながら読んでくださいね。
 円を描き、円に2点で交わる直線を描いて、この直線が水面を表すと考えます。直線と円弧で囲まれたDの字型の部分の面積が円の面積の何倍か、を求めれば良い。
 水は半分以下だとします。(もし半分より多く水が入っている場合は、水のない部分のDの字型の面積を円の面積から引き算すれば良い。)
 円と水面との接点(2つありますのでA,Bとする)と円の中心Cとでできる二等辺三角形を描きます。この三角形の頂角(Cでの角度)を2θとします。
円の半径をrとして、円の中心から水面までの最短距離をhとします。つまり水面を底辺とする、二等辺三角形の高さがhです。すると
h = r cos θ
三角形ABCの面積Sは
S = hr sin θ
よって、
S = (cosθ)(sinθ)r^2
です。一方、Cをかなめとする扇形ABの面積はθr^2(もしθ=π(180度)なら円の面積πr^2に一致することを確かめてください。)です。だから、求めるD字型の部分の面積Tは
T=(θ-(cosθ)(sinθ))r^2
となります。θを求めるには
θ= acos(h/r)
を使って計算します。(acosは逆三角関数(arc cosine)です。)これで普通の関数電卓かexcelで計算できる式になりました。
 このTに円柱の高さをかけ算すると、体積が求められます。

 もし半分より多く水が入っている場合は、(上記の計算では水のない部分のDの字型の面積を求めたので)Tの代わりに2πr^2からTを差し引いたものを使います。
    • good
    • 3
この回答へのお礼

お礼が遅れて大変申し訳ありません。とても丁寧でわかりやすい解説、どうもありがとうございました!参考にさせてもらいます。

お礼日時:2001/03/02 03:24

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q円柱と球面の囲まれる部分の体積曲面積を求める問題で

円柱S1:x^2+y^2=axと球面S2:x^2+y^2+z^2=a^2,a>0を考える。
(1)S1とS2によって囲まれる部分の体積を求めよ。
(2)球面S2が円柱S1によって切り取られる部分の曲面積を求めよ。
という問題がわかりません。 解説を加えてもらえると幸いです。
よろしくお願いします。

Aベストアンサー

円柱S1:x^2+y^2=ax ...(A)
球面S2:x^2+y^2+z^2=a^2 ...(B)

x=rcosφ,y=rsinφ,z=zとおいて円筒(円柱)座標に変換する。
円柱S1:r=acosφ(-π/2≦φ≦π/2) ...(A')
球面S2:r^2+z^2=a^2(0≦r≦a) ...(B')

(1)
V=∫∫∫{x^2+y^2+z^2≦a^2,x^2+y^2≦ax} dxdydz
=∫∫∫{r^2+z^2≦a^2,0≦r≦acosφ,-π/2≦φ≦π/2} rdrdφdz
=4∫∫∫{0≦z≦√(a^2-r^2),0≦r≦acosφ,0≦φ≦π/2} rdrdφdz
=4∫[φ:0→π/2} dφ∫[r:0→acosφ]rdr∫[z:0→√(a^2-r^2)dz
=4∫[φ:0→π/2} dφ∫[r:0→acosφ]r√(a^2-r^2)dr
=4∫[φ:0→π/2} dφ[-(1/3)(a^2-r^2)^(3/2)][r:0→acosφ]
=4∫[0→π/2} (1/3)[a^3-a^3*(sinφ)^3]dφ
=(4/3)a^3∫[0→π/2}{1-(sinφ)^3]dφ
=(4/3)(π/2)a^3-(1/3)a^3∫[0→π/2}4(sinφ)^3 dφ
=(4/3)(π/2)a^3-(1/3)a^3∫[0→π/2} {3sinφ-sin(3φ)}dφ
=(2/3)πa^3-(1/3)(a^3)[-3cosφ+(1/3)cos(3φ)][0→π/2}
=(2/3)πa^3-(1/3)(a^3){3-(1/3)}
=(2/3)πa^3-(8/9)a^3
=2(3π-4)(a^3)/9

(2)
球面S2が円柱S1によって切り取られる部分の曲面積は対称性から
z=f(x.y),D={(x,y)|x^2+y^2≦ax,x^2+y^2+z^2≦a^2,0≦z}とおくと
S=2∫∫{D} √{1+(fx)^2+(fy)^2}dxdy
=2∫∫{D} √{1+(fr)^2+(fφ/r)^2}rdrdφ
z=f(r,φ)=√(a^2-r^2)
fr=∂f/∂r=-r/√(a^2-r^2),fφ=∂f/∂φ=0
D→E={(r,φ)|0≦r≦acosφ,-π/2≦φ≦π/2}
E→E2={(r,φ)|0≦r≦acosφ,0≦φ≦π/2}
なので
S=2∫∫{E} √{1+(fr)^2} rdrdφ
=2∫∫{E} r√{1+r^2/(a^2-r^2)} drdφ
=2a∫∫{E} r/√(a^2-r^2) drdφ
=4a∫∫{E2} r/√(a^2-r^2) drdφ
=4a∫[φ:0→π/2] dφ∫[r:0→acosφ] r/√(a^2-r^2) dr
=4a∫[φ:0→π/2] dφ[-√(a^2-r^2)][r:0→acosφ]
=4a∫[0→π/2] (a-asinφ)dφ
=4a^2∫[0→π/2] (1-sinφ)dφ
=4(a^2)[φ+cosφ][0→π/2]
=4(a^2){(π/2)-1}
=2(π-2)(a^2)

円柱S1:x^2+y^2=ax ...(A)
球面S2:x^2+y^2+z^2=a^2 ...(B)

x=rcosφ,y=rsinφ,z=zとおいて円筒(円柱)座標に変換する。
円柱S1:r=acosφ(-π/2≦φ≦π/2) ...(A')
球面S2:r^2+z^2=a^2(0≦r≦a) ...(B')

(1)
V=∫∫∫{x^2+y^2+z^2≦a^2,x^2+y^2≦ax} dxdydz
=∫∫∫{r^2+z^2≦a^2,0≦r≦acosφ,-π/2≦φ≦π/2} rdrdφdz
=4∫∫∫{0≦z≦√(a^2-r^2),0≦r≦acosφ,0≦φ≦π/2} rdrdφdz
=4∫[φ:0→π/2} dφ∫[r:0→acosφ]rdr∫[z:0→√(a^2-r^2)dz
=4∫[φ:0→π/2} dφ∫[r:0→acosφ]r√(a^2-r^2)dr
=4∫[φ:0→π/2} dφ[-(1/3)(a^2-r^2)^(3/2)][r:0→acosφ]
=4∫[0→π/2...続きを読む

Q中学数学の問題です。 解き方を教えてください。よろしくお願いします。

中学数学の問題です。 解き方を教えてください。よろしくお願いします。
中学数学の問題です。
解き方を教えてください。
よろしくお願いします。

Aベストアンサー

#2 です。

>(2)について
>出発点以外で)最初に6cmになるのはQが周回遅れのPに追いついたときです。
>とのことですが、なぜ、周回遅れでちょうど追いついた時に、AEの位置にPQがいるとわかるのでしょうか?
>また、途中でPQ間が6CMになる可能性はなぜ、排除できるのでしょう?


回答内容をちゃんと読んでください。どこにもそんなこと書いてないでしょ。

Pは上の長方形ABCDを周回し、Qは下の長方形EFGHを周回しています。
2つの長方形は直方体の上面と底面なので平行であり、直方体の高さはAEの6cmで与えられているので、PQの最短距離はこれに等しい。したがって、PQが6cmになるのはAEと平行、すなわちPがQの真上にある時です。(それ以外ならPQは必ず6cmより大きくなります)
以上の条件が成り立つならPQがどこにあろうと関係ありません。

Q円柱の容量(L)を教えてください。

円柱の容量(L)を教えてください。

(1)底の面積が500mm、高さ339.5mmの円柱の容量(L)を教えてください。
また、底の面積が570mmに拡大された場合、上記と同容量にするには
高さは何mmになりますか?

(2)底の面積が520mm、高さ339.5mmの円柱の容量(L)を教えてください。
また、底の面積が570mmに拡大された場合、上記と同容量にするには
高さは何mmになりますか?

計算式もよろしくお願いします。

Aベストアンサー

円柱の体積は
底面積*高さ
で、底面積は
半径*半径*円周率
で与えられます。従って(1)の場合(底の面積が500mmとありますが、これは底面の直径では?)、
250*250*3.14*339.5
で体積(mm3)が求められます。底面の直径が500→570ということは底面積が1.14*1.14倍に
なったということですから、高さを339.5/1.14/1.14 とすれば同じ体積になります。

(2)もやり方は同じです。

Q数学の問題です。解けるかたどうぞよろしくお願いします;;

数学の問題です。解けるかたどうぞよろしくお願いします;;


oを原点とする座標平面においてy=x2で表される曲線をc1,これを点(5,-1)に関して対称に移動した曲線をc2とする。
c1上の点Pにおける接線をl1,c2上の点Qにおける接線をl2とする。l1,l2の傾きがともにmであるときP,Qの座標をmで表せ。

Aベストアンサー

 曲線c1:y=x^2 は原点O(0,0)を頂点とする下に凸な放物線ですので、これを点(5,-1)に関して対称に移動した曲線は 点(10,-2)を頂点とする上に凸な放物線となります。
 従って、曲線c2は次のように表されます。
  c2: y=-(x-10)^2-2

 点P(p,p^2),点Q(q,-(q-10)^2-2) とすると2つの接線l1,l2の傾きはそれぞれ次のようになります。
  2p=-2(q-10)=m
 ∴p=m/2, q=-m/2+10

 従って、点P,点Qの座標は次のように表されます。
  点P(m/2,m^2/4), 点Q(-m/2+10, -m^2/4-2)

Q面積

円柱の面積の求め方 方程式とか、詳しく教えてください。
明日までにやらなくちゃいけない仕事の中になぜかこんな課題が・・・。
誰か助けてー!

Aベストアンサー

 ごめん、面積だったね。
 底面の円の半径(r)、高さ(h)
 底面積(S1)、側面積(S2)、円周率(π)とします。
1)まず、底面積
 (底面積)=(半径)×(半径)×(円周率):円の面積
  文字式で S1=πr^2
  これが 上下2つ
2)側面積
  底面の円周と高さをたてとよこにする長方形です。
 (展開図を考えて下さい)
  (側面積)=(円周)×(高さ)
       =(半径)×2×(円周率)×(高さ)
  文字式で S2=2πrh
3)合計して
  全表面積=2S1+S2
      =2πr^2+2πrh
      =2πr(r+h)
中学1年生程度の解答で失礼。

Q下記の方程式の解き方について、分かり易くご教授下さる方はご回答を宜しく

下記の方程式の解き方について、分かり易くご教授下さる方はご回答を宜しくお願いいたします。

9,733=500/1+r + 500/(1+r)^2 + 500+10,000/(1+r)^3

Aベストアンサー

まず確認です。
>9,733=500/1+r + 500/(1+r)^2 + 500+10,000/(1+r)^3
式は
9733={500/(1+r)} + {500/(1+r)^2} + {(500+10000)/(1+r)^3}
の意味で良いですか?

x=1/(1+r)と置換して方程式を解いてから、xからr=(1/x)-1でrに戻せばいいです。

上の置換をしたxの3次方程式の左辺は因数分解できませんので、一般的なカルダノの方法で解くしかありません。
決まりきった解法ですので教科書にも載っている解法です。次のURLにも載っていますので見ながら(決められた手順どおりに当てはめていけば解けますので)やってみてください。
参考URL)
>http://ja.wikipedia.org/wiki/三次方程式

参考URL:http://ja.wikipedia.org/wiki/三次方程式

Q面積&体積を教えて下さい。

AB=8cm,BC=6cmの長方形ABCDにおいて

(1)AC⊥DEのとき、DEの長さと△ADEの面積を求めよ。

(2)ABを軸として長方形ABCDを回転させてできる円柱の側面積S1と体積V1を求めよ。

(3)BCを軸として△ABCを回転させてできる円錐の側面積S2と体積V2を求めよ。円周率はπとする。


AC10cmから先は進みません~!
回答&解説をよろしくお願いします。
_(._.)_

Aベストアンサー

1)
△ABCと△ADEは相似であるので、底辺、高さ、斜辺の比はどちらも同じ。

△ABCは、高さ8、底辺6の直角三角形なので、三平方の定理より、斜辺ACは10。

△ADEの斜辺は6(辺AD)なので、底辺は6÷10×6=3.6、高さは8÷10×6=4.8。

辺DEは△ADEの高さなので4.8cm。△ADEの面積は底辺×高さ÷2=3.6×4.8÷2=8.64平方cm。

2)
高さ8cm、底面の半径が6cmの円柱になる。

側面の面積S1=半径6cmの円の円周の長さ×高さ8cm

円柱の体積V1=半径6cmの円の面積×高さ8cm

半径rの円周の長さの公式は2πrなので、半径6の円の円周は、2π×6。S1はこれに高さ8をかける。

S1=2π×6×8=92π。

半径rの円の面積の公式はπr2乗なので、半径6の円の面積は、π×6×6.V1はこれに高さ8をかける。

V1=π×6×6×8=228π。

3)
高さ6cm、底面の半径が8cmの円錐になる。

S2は円錐を展開した場合の扇型の面積。

半径r、母線lの円錐の、扇形の面積はπlr。

円錐の母線の長さは辺ACなので10。底面の半径は辺ABなので8。

S2=π×8×10=80π。

V2は円錐の体積。

半径rの円が底面、高さhの円錐の体積は、1/3×πr2乗h。

高さは辺BCなので6。底面の半径は辺ABなので8。

V2=π×8×8×6÷3=128π。

1)
△ABCと△ADEは相似であるので、底辺、高さ、斜辺の比はどちらも同じ。

△ABCは、高さ8、底辺6の直角三角形なので、三平方の定理より、斜辺ACは10。

△ADEの斜辺は6(辺AD)なので、底辺は6÷10×6=3.6、高さは8÷10×6=4.8。

辺DEは△ADEの高さなので4.8cm。△ADEの面積は底辺×高さ÷2=3.6×4.8÷2=8.64平方cm。

2)
高さ8cm、底面の半径が6cmの円柱になる。

側面の面積S1=半径6cmの円の円周の長さ×高さ8cm

円柱の体積V1=半径6cmの円の面積×高さ8cm

...続きを読む

Q数学について ト ナ ニ ヌ ネ ノ の解き方と回答を教えてください! よろしくお願いしますm(_

数学について
ト ナ ニ ヌ ネ ノ
の解き方と回答を教えてください!
よろしくお願いしますm(_ _)m

Aベストアンサー

2^x = Xとでも置いてXに関する二次方程式を解く
判別式>0と 2^x>0とからaの範囲を決定

ト:- (マイナス)
ナ:1
ニ:3
ヌ:2
ネ:0
ノ:1

Qベクトル解析の面積分

ベクトル解析学の面積分でわからないところがあります。
面積分習いたてであまりわからないのですが、
S:円柱面 y^2+z^2=4
0≦x≦1
z≧0
のとき、次の面積分を求めよ。
∫_[S](xi+yj+zk)・dS

この問題なのですが、
z^2=4-y^2≧0
y^2≧4
-2≦y≦2
くらいまで少し考えてみたのですが、すぐに行き詰まってしまいました。
この後はどうすればいいのでしょうか。
今まではこの後に
z=f(x,y)
とかになり、fxやfyを出せたのですぐにできたのですが、zがxで表現できないので…
よろしくお願いします。

Aベストアンサー

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r * cosθ, r * sinθ)・(0, cosθ, sinθ) * |dS|
= (r * (cosθ)^2 + r * (sinθ)^2) * r * dθ * dx
= r^2 * dθ * dx.

これを 0≦θ≦π,0≦x≦1 の範囲で積分すると,円柱側面での面積分は,
I1 = r^2 * π * 1 = πr^2.


■円柱の底面 (x=1)

・外向きの単位法線ベクトル:n=(1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(1, 0, 0) * |dS|
= x * |dS|
= |dS|.

これを円柱の底面にわたって積分すると,底面積そのものなので,
I2 = πr^2 / 2.


■円柱の底面 (x=0)

・外向きの単位法線ベクトル:n=(-1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(-1, 0, 0) * |dS|
= -x * |dS|
= 0.

∴ I3 = 0.


■カマボコの底面 (z=0)

・外向きの単位法線ベクトル:n=(0,0,-1).

∴ (x, y, z)・dS
= (x, y, z)・(0, 0, -1) * |dS|
= -z * |dS|
= 0.

∴ I4 = 0.

したがって全体の面積分は I1+I2+I3+I4 = (3/2)πr^2 = 6π.

答え合ってますか?

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r...続きを読む

Q中学数学の問題です。 解き方を教えてください。よろしくお願いします。

中学数学の問題です。 解き方を教えてください。よろしくお願いします。

Aベストアンサー

(1) 点Oから線分ACに下ろした垂線の足を点Hとします。
    △OACは二等辺三角形ですので、点Hは線分ACを2等分し、AH=CH=2cm となります。
    ここで、△OAHについて三平方の定理を使うと、 OH=√(OA^2-AH^2)=√(8^2-2^2)=2√15 (cm) となります。
    従って、△OACの面積は次のように求められます。

      △OAC=OH×AC/2=4√15 (cm^2)


(2) AP+PCの距離が最短になるのは、AP⊥OB、CP⊥OBのときです。
    △OABの面積は△OACの面積に等しいですので、線分APの長さは次のように求められます。
      AP=△OAB/OB×2=√15 (cm)
    同様に、線分PCの長さも √15 (cm) と求められますので、AP+PCの最短距離は 2√15 (cm) となります。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報