
【オイラーの公式のeとiについて】 虚数の指数部の意味・感覚を掴みたい。
お願いします。
数年前に「オイラーの贈り物」(だったかな?)という本に出会いまして、
exp(e,iπ)=-1 ・・・(ア)
の式の意味を理解したくなりました。
exp(e,i・θ)=cos(θ)+i・sin(θ) ・・・(イ)
(イ)の式で、θ=0 の時に(ア)が導かれるのはわかりました。
しかし、指数関数の指数部が虚数になっている、ということが感覚的になじめません。というか、理解できません。
公式を導く過程を読んでも、「実数の虚数乗」には違和感がぬぐえません。アレルギーかもしれません(笑)
4年制大学を卒業(しかも理系)した者として恥ずかしいのですが、いい年したオヤジの錆付いた脳みそにも浸透する、
易しくて、いや優しくて、キラリと光る解説は望めませんでしょうか。
まことに厚かましいお願いですが、皆様の知恵をお貸しください。
No.4ベストアンサー
- 回答日時:
級数の理論をきっちり構築して
複素数の範囲の級数で三角関数や指数関数の類を定義すれば
立派に「導く」ことができますね.
発見的な(まったく厳密ではない)考え方としては
cosθ+isinθ=f(θ)
とおくと,三角関数の加法定理によって
整数s,tに対して
f(st)=f(s)f(t)
f(st)=f(s)^t
といった「指数法則」が成り立つので,
f(x)は何かの指数関数だろうと予測が付くわけです.
そこで,f(x)=a^x と表してみるわけです.
そして,大胆に微分をしてみると
a^x log(a) = f'(x)
= (-sin(x)+icos(x)) = i(cos(x)+isin(x))
= if(x) = i a^x
なので,log(a)=i すなわち,a=e^{i}
これでめでたく
e^{ix} = cos(x)+isin(x)
と決定できるわけです.
#この議論は微分方程式の部分 f'=if だけ取り出して,
#初期条件と解の一意性を使えば正当化できます.
#すなわち,微分方程式側からf(x)=e^{ix},
#解の一意性よりe^{ix} = cos(x)+isin(x)
なお,exp(iθ)に「eを何回か掛ける」というような
「素朴な意味付け」はできません.
そもそも,有理数や負の数の指数の段階で
素朴な「何回か掛ける」から逸脱してるわけです.
あえて言いをつけるなら,
e^{実数}だったら「実軸上」から逃れられないが
e^{i(実数)}だと実軸から「実数」の分の角度だけ
はみ出してしまうくらいでしょう.
とりあえず,最近の書籍だと
結城浩「数学ガール---フェルマーの最終定理」(ソフトバンク)
に,このあたりの説明が,
知ってる人は誰でも知ってるけども,
あえて文書化されるようなことはあんまりなかった切り口で
説明されています.
#i^iだと実数であるだけでなく「多価性」があるというのも
#素朴な世界からは逸脱してますが。。。
#三角関数の周期性の反映ですね
No.7
- 回答日時:
No1です。
質問者さんも私と同じだと思いますが、実数の複素数乗e^zは解析的に(級数で)定義すれば、それが実関数の自然な拡張になっていることは重々承知しているつもりです。また、そのように定義するしかないことも、充分承知しています。しかし、ここで問題になっていることは、「感覚的にどうか」ということです。私がいいたいのは、「実数の虚数乗(複素数乗)」は導かれるという性質のものではなく、(解析的に)定義されるものだということです。だから、感覚的になじめなくって当然のことだと申し上げているわけです。No.6
- 回答日時:
東海大学出版会「虚数の情緒」吉田武著に、詳しく書かれています。
「オイラーの贈り物」も吉田さんの本ですね。
電卓をたたきながら「虚数の情緒」を読んでください。
朝倉書店数学30講シリーズ「複素数30講」志賀浩二著、127ページ、128ページに数学の専門家には、見られたくない図がでています。複素数の写像、関数をイメージや、図で表してくれる本には、なかなか出合えませんでした。「複素数」「関数論」「複素関数」という本をかなり立ち読みしましたが、吉田さんと志賀さんの本しか知りません。
しKしかKJ■ ひきつづき みなさまへ おれい レスポンス です ■
■ ありが とう ご ざい ます ありがとう ■
まもなく しま 締切 ■ ■
No.5
- 回答日時:
#2さんと言ってることは同じですが。
実数関数を複素数に拡張するときには、解析接続という操作をします。
単純に言えば、微分が、複素数でも実数と同様に行えるようにするわけです。
exp(x)に関して言えば(xは実数)
exp(x)をxで微分するとexp(x)になるわけですが、
xを複素数zに形式的に置き換えたexp(z)をzで微分したものがexp(z)になるように、exp(z)を定義すると、
exp(z) = cos(θ) + isin(θ)
になります。
■ まもなく しまきり ますので ■
■ すべTて の Mにん みなさま に 感謝 多謝 謝々 ■
ありがとう ございます ■エンド OF TEXT ■
No.2
- 回答日時:
最初に定義したときの話の流れは知りませんが、
指数、三角関数を複素平面全体で正則なものとして定義しようと思えば自然とそうなります。というか一致の定理よりそうしかできません。
そもそもの複素関数としての指数、三角関数の定義は実数の範囲での原点まわりのテイラー展開の変数をそのまま複素数に拡張したものです。
実際に級数を書いてみれば(イ)の式が成り立つのもすぐにわかります。
なので決して直感的に理解するものではありません。
仮にできたとしてもそれは後付けしたものにすぎません。
たいへんに時間が経過してしまい、すみません。。
まだ、りかいに必要な、各種リソースが、実確保で、、!もとい、未確保であります。。。Orz。。
。。。。理解の進捗を、回答締め切りを持って示したいと、考えていますので、、、回答者様、皆様がた、、もうしょうしょうお時間をください。。。。
重ねて、ありがとうございます。。。
No.1
- 回答日時:
>>公式を導く過程を読んでも、「実数の虚数乗」には違和感がぬぐえません
e^(iθ)=cos(θ)+i・sin(θ)は公式と呼ばれていますが、私は、「この公式を導く」という言い方のほうが、かえって違和感を感じます。「実数の虚数乗」は導かれるという性質のものではなく、定義するものですよね。感覚的になじめなくって当然のことです。
同様のことは「実数の行列乗」についてもいえます。Aを行列としたときe^(A)って何ですか?想像力をたくましくして、いろいろ思いをめぐらすことは自由ですので、何でもよいから思い描いて下さい。でも、結局はこの場合も定義するしかないということに行き着きます。当然のことですが、定義が違えば結果も違います。e^(iθ)に別の定義を採用すればe^(iθ)≠cos(θ)+i・sin(θ)とすることもできるということです。
「実数の虚数乗」の概念はアプリオリではないということです。感覚的になじませようとすること自体が無理のような気がします。
多くの方の、丁寧な回答に感謝の気持ちで、いっぱいです。
難しいことを易しく説明することは容易ではないという本質的な矛盾を含んだ質問に、みなさまエネルギーを注いでご説明くださり、重ねて御礼申し上げます。
取り急ぎ、ありがとうの第一報として、カキコします。
Mathematicsの面白さ、適用次第で日常生活へ深く浸透できる、その思考ツールとしての威力に気が付いてから、自分のもはやキレてない頭脳にエールを送りながら、六十の手習いよろしく、時間を見つけては勉強しております。
あいまいな日常語でお茶を濁すような、ありきたりのお礼文ではなく、皆様からの解説をものにしてから、OKwaveに戻ってきます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 量子力学 球面調和関数 導出 方位角成分 微分方程式の解 2 2022/07/02 13:40
- 大学受験 現在高3私立理系志望(浪人するかもです) 英数物の3科目偏差値40〜45程度共テ6割 所属高校の偏差 2 2023/02/25 09:24
- 数学 因数分解の基本 4 2022/12/26 02:48
- 数学 数の概念について。 1 2022/06/06 12:40
- 数学 ユークリッドの互除法、合同式の問題について 1 2022/05/08 11:49
- その他(病気・怪我・症状) 学習障害について 1 2023/05/11 21:36
- 物理学 大学物理に詳しい方に質問です。 ラザフォードたちが実験で知りたかったことは衝突パラメータbと原子核の 1 2023/03/16 03:39
- 物理学 ニュートンの冷却法則と熱伝導方程式について 3 2023/03/05 19:51
- 高校 対数方程式につきまして 4 2022/05/05 07:55
- 数学 離散フーリエ逆変換が周波数分割数をNにできる理由について 4 2022/09/18 12:56
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
皆さん定義を教えてください 「...
-
べき乗
-
性暴力ってどこまでOK,どこから...
-
同時(性)の定義の意味、そして...
-
1未満と1以下の違い
-
最大元と極大元の定義の違いが...
-
無限から無限を引いたら何にな...
-
日本語 ことば ひとまわり ふた...
-
ACCESS IIF関数 複数条件の設...
-
eの0乗は1ってどういう原理です...
-
「たて目」っていうのは要する...
-
p⇒q=(¬p)∨qについて
-
ヘシアンが0の場合どうやって極...
-
e<3の証明を教えてください。
-
定義付けできない言葉について
-
半空間,開半空間,境界の定義に...
-
9.99……と10が等しくなる理由を...
-
フーリエ変換について質問です。
-
直和分解とは? 同値関係、同値類
-
負数の累乗は???
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
皆さん定義を教えてください 「...
-
べき乗
-
無限から無限を引いたら何にな...
-
電磁誘導に法則 V=ーdφ/dt...
-
1未満と1以下の違い
-
「互いに素」の定義…「1と2は互...
-
日本語 ことば ひとまわり ふた...
-
eの0乗は1ってどういう原理です...
-
複雑な家庭とは
-
ヘシアンが0の場合どうやって極...
-
最大の自然数mが存在すると仮定...
-
最大元と極大元の定義の違いが...
-
ACCESS VBAでインポート定義の場所
-
p⇒q=(¬p)∨qについて
-
√6=√(-2)(-3)=√(-...
-
\\mathrmと\\rmの違いについて...
-
なぜ、直角三角形ではないのにs...
-
0に限りなく近い数は存在するの?
-
エクセルで「”」インチの表示形...
-
「logx^2=2logx」が間違って...
おすすめ情報