「夫を成功」へ導く妻の秘訣 座談会

不定積分∫log(1+x)/x dxが分かりません。教科書(理工系の微分積分学:学術図書出版)を読み漁ったのですが、見つかりませんでした。部分積分と、置換積分を考えてみて計算したのですが、私のやり方では両方うまくいきませんでした。(参考書としては、マセマの微分積分学の本を持っています。)

置換積分:1+x=exp(t)と置換する。(与式)=∫texp(t)/exp(t)-1 dtとなりうまく計算できません。

それともこれは何かでうまくはさんで解くタイプの問題なのでしょうか?(ハサミウチの原理などを利用)

大本の問題は広義積分の問題で、積分区間は、-1→1となっています。
何か知っていることがありましたら、教えてください。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

xの定義域は


1+x>0つまり x>-1
です。
この積分は初等関数の範囲では積分不可能です。つまり解析的には解けません。高校までの数学の範囲では積分不可能(積分できない)というのが正解とされます。
ただし、定義域x>-1では、関数y=log(1+x)/xをプロットしてみていただけば連続関数となりますから数値積分は可能です。
初等関数の範囲では積分結果を表現できませんが
大学レベルの数学の範囲なら
特殊関数のオーダー2の多重対数関数のLi[2](x)
http://wkp.fresheye.com/wikipedia/%E5%A4%9A%E9%8 …
を使えば積分結果が求められます。

-1<x<0の時
I=log(1+x)*log(-x)+Li[2](1+x)+C
x=-1~0の定積分は
∫[-1,0]log(1+x)/xdx=(π^2)/6≒1.64493

x>0の時
I=-Li[2](-x)+C

定積分は上の積分結果の式を使って、xの範囲により分割して積分します。
∫[-1,2]log(1+x)/xdx
=∫[-1,0]log(1+x)/xdx+∫[0,2]log(1+x)/xdx
=(π^2)/6 -Li[2](-2)≒3.08168
となります。
    • good
    • 1

定積分ならば


岩波全書 森口繁一他「数学公式I」1984年 の P241 では

(0→1)∫log(1+x)/x dx=π^2/12
(0→1)∫log(1-x)/x dx=-π^2/6

となっていますので、後者を x = -t と置き、積分範囲を変えて組み合わせれば

(-1→1)∫log(1+x)/x dx=π^2/12 + π^2/6=π^2/4

が得られます。最後の式の検算はお願い致します。
    • good
    • 0

不定積分∫[log(1+x)/x] dxは初等関数では表せないようです。



∫[log(1+x)/x] dx
=logx・log(1+x)+(1+x)+(1+x)^2/4+(1+x)^3/9+・・・+(1+x)^n/n^2+
・・・
分母がxではなく1+xであれば簡単に積分出来る(={log(1+x)}^2/2)のですが・・・、
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q数学IIIのlogの積分

数学IIIの不定積分の問題で、
log(x+1)を積分する、という問題があります。

これを置換積分すると、答えが
(x+1)logx-(x+1)+cとなってしまいました。
でも、答えや類題では+cの前が-xになっています。

また、他サイトで見た公式には、
logxの不定積分は、
x(logx-1)+cとなっていて、この通りに計算しても+cの前は(x+1)になるとおもうんですが…


なぜ、+cの前は-xになるのでしょうか?

Aベストアンサー

>(x+1)logx-(x+1)+cとなってしまいました。

(x+1)log(x+1)-(x+1)+c
ではないですか?

なお、-1+cもxに無関係な定数ですよ。

Q数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。


最初の問題は部分積分法の公式を使うと
∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、
解答は
log(x+2)・x-x+2log|x+2|+C (Cは積分定数)

となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。


次の問題は、上と同じようにして部分積分法の公式を使うと
∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、
解答は
x・log(1-x)-x-log|1-x|+C(Cは積分定数)

となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。


分かる方が居ましたら、教えて下さると嬉しいです!

数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。


最初の問題は部分積分法の公式を使うと
∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、
解答は
log(x+2)・x-x+2log|x+2|+C (Cは積分定数)

となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。


次の問題は、上と同じようにして部分積分法の公式を使うと
∫log(1-x)=lo...続きを読む

Aベストアンサー

ひとつめ。
1/(x+2) = 1/x + 1/2 だと勘違いしていませんか?

ふたつめ。
(1)式とは違い、分子にxがあるので、部分分数分解をして、
分子にxがない状態にすると、積分しやすくなるからです。
この例でいくと、∫(-1+1/(1-x))dx = -∫1dx + ∫(1/(1-x))dxになるので、
あとはそのまま積分できます。

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Qx^(2/3) + y^(2/3) = 1で囲まれる領域D

x^(2/3) + y^(2/3) = 1で囲まれる領域Dを求めたいのですが、どのように求められるのでしょうか?

Aベストアンサー

ANo.7 です。
ANo.4さんの参考URLと同じものを参照していました。

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q広義積分の問題です。。。

広義積分の問題です。。。
∫(0~1)logx/x^a dx (ただしaは実数でa≠1)を求める問題です。

部分積分して1/(-a+1)[(logx-1)/x^(a-1)](0~1)
というところまでいき
a<1とa>1にして考えましたが
∞×0が出てきてしまい八方塞がりな状況です。
教えていただけると嬉しいです。

Aベストアンサー

NO1の者です。No2様ご指摘のように,誤っていました m( )m
部分積分のところから???でした。

∫logx/x^a dx
=∫x^(-a)・log(x) dx
=x^(1-a)/(1-a)・log(x)-∫x^(-a)/(1-a)dx
=x^(1-a)/(1-a)・log(x)-x^(1-a)/(1-a)^2
=x^(1-a)/(1-a)^2・{(1-a)log(x)-1}

よって、
I=0-1/(1-a)・lim[x→0]x^(1-a)log(x)-1/(1-a)^2
=-1/(1-a)・lim[x→0]x^(1-a)log(x)-1/(1-a)^2

A=lim[x→0]x^(1-a)log(x)=lim[x→0]{log(x)/x^(a-1)} は、
分子→-∞で、
分母は、a<1のとき分母→+∞、a>1のとき分母→+0

よって、まずa>1のときA→-∞ 即ちI→-∞(発散)
次にa<1のときロピタルの定理を用い,
A=lim[x→+0]{(1/x)/((a-1)x^(a-2))}
=-lim[x→+0]{x^(1-a)/(1-a)}=0
即ちI=-1/(1-a)・0-1/(1-a)^2=-1/(1-a)^2

NO1の者です。No2様ご指摘のように,誤っていました m( )m
部分積分のところから???でした。

∫logx/x^a dx
=∫x^(-a)・log(x) dx
=x^(1-a)/(1-a)・log(x)-∫x^(-a)/(1-a)dx
=x^(1-a)/(1-a)・log(x)-x^(1-a)/(1-a)^2
=x^(1-a)/(1-a)^2・{(1-a)log(x)-1}

よって、
I=0-1/(1-a)・lim[x→0]x^(1-a)log(x)-1/(1-a)^2
=-1/(1-a)・lim[x→0]x^(1-a)log(x)-1/(1-a)^2

A=lim[x→0]x^(1-a)log(x)=lim[x→0]{log(x)/x^(a-1)} は、
分子→-∞で、
分母は、a<1のとき分母→+∞、a>1のとき分母→+0

よって、まずa>1のときA→-∞ 即...続きを読む

Q∫{x/(x+1)}dxの解き方

とても初歩的なのですが、積分についての質問です。
∫{x/(x+1)}dxの解き方が分かりません。

以下のように解きました。

∫{x/(x+1)}dx
x+1=tとする
x=t-1よりdx=dt
よって
∫{x/(x+1)}dx=∫{(t-1)/t}dt
=∫(1-1/t)dt
=t-log(t)+C (C:積分定数)
=(x+1)-log(x+1)+C

こうなったのですが、どうやら計算違いのようで、解は「x-log(x+1)+C」となっていました。
解が出なかったわけではなく、最初の時点で「x/(x+1)」を「1-1/(x+1)」と変形したらちゃんと解は出たのですが、上記の解法の間違いが分からず、もやもやしています。
どこが間違っているのでしょうか。
置換積分が使えるのは特定の数式の場合のみなのでしょうか。
積分は不得意なので、見苦しい点あるかと思いますが、ご指摘お願いします。

Aベストアンサー

見たかんじ合っていそうです。

=(x+1)-log(x+1)+C

=x-log(x+1)+(C+1)

C+1を積分定数と考えればいいでしょう。


人気Q&Aランキング