コンパクトとは、有限と無限に関するもの(有界閉集合)である
ことは何となく分かっているつもりです。
しかし、開集合がコンパクトでない理由がいまいち分かりません。
たとえば、よく教科書に掲載されている例として
開区間(-1,1)を、Xn=(-n/(n+1),n/(n+1)) (n∈N) ※Nは自然数全体
で覆うというものがあり、これは有限部分被覆を持たないというものです。
でも、Xnの最後は(-1,1)なので、この一つをとりだせば
それだけで有限被覆となると思います。
この矛盾はどこから来るのか分かりません。
どなたか、ご教授ねがいます。
No.2ベストアンサー
- 回答日時:
>(-1,1)にならないといことは、やはり、Xnは(-1,1)の開被覆ではないということになってしまいます。
なりません.質問者はεδや無限に対する理解が
かなり怪しいのでしょう.
(-1,1)にならなくたって被覆です.
たとえば,εを-0.99999 にしましょう.
nをものすごーく大きくする,たとえば, n=100000にすると
n/(n+1)=0.999990000099...
となるので
(-n/(n+1),(n/(n+1))にεは含まれるのです.
(-1,1)に含まれるどんな数をもってきても
このようにその数を含む(-n/(n+1),(n/(n+1))を
必ずとることができます
#ε=n/(n+1)をnについてといて
#それ以上の整数をとればよい.
したがって,{Xn}は(-1,1)の開被覆です.
しかし,どんなにがんばっても有限個で覆うことはできません.
有限個でとめたとしたら,
n/(n+1)は1にはなれないので,n/(n+1)と1の間の数が
こぼれてしまうのです.
こういうのを「稠密性」というのでした.
ちなみに
>コンパクトとは、有限と無限に関するもの(有界閉集合)である
>ことは何となく分かっているつもりです。
この理解は明らかな誤りですので
正しく理解しましょう.
有限と無限,有界はそれほどは関係しません.
ちなみに,コンパクトと有界閉集合は別の概念であり,
ある特定の条件において同値であるということも
理解しましょう.
No.3
- 回答日時:
#1のものです。
(-1,1)の中の要素1-ε1 (0<ε<1)を考えます。
1-ε1がXnに含まれるためには
1-ε1<n/(n+1)
を満たせばよいことになります。
つまり、n>(1/ε1)-1 なるnをとればよい。
もし、nが全ての自然数を取れるのであれば、この不等式を満たすnはε1がどんなに小さくても必ず存在します。
つまり、"((-1,1)の中で)1"の近傍、どれだけ1に近い数でもXnで被覆することが可能です。
しかし、nの個数が有限であるとするとその中の最大の物をNとすると
ε2<1/(N+1)となるε2を持ってくると1-ε2はXnで覆うことができなくなります。つまり、有限のXnの組で被覆することはできません。
No.1
- 回答日時:
>でも、Xnの最後は(-1,1)なので、この一つをとりだせば
>それだけで有限被覆となると思います。
Xn=(-n/(n+1),n/(n+1)) (n∈N) でnを何にしても(-1,1)にすることはできません。
確かにn→∞の極限X∞は(-1,1)ですが、∞なる自然数が存在するわけではありません。Xnに最後なるものは存在せず、(-1,1)に近づきますが絶対に一致することはありません。
この回答への補足
回答ありがとうございます。
>Xnに最後なるものは存在せず、(-1,1)に近づきますが絶対に一致することはありません。
(-1,1)にならないということは、そもそもXnは(-1,1)の開被覆ではないということですか?
開集合とは、その要素に近傍が必ずあるのが定義ですから、
(-1,1)にならないといことは、やはり、Xnは(-1,1)の開被覆ではないということになってしまいます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 実数の収束と上限 4 2023/01/20 22:46
- 数学 .(X,O)をコンパクト空間とする.Xの開被覆C={Ui;i∈N}について,任意のi∈Nに対して,U 2 2023/01/17 18:54
- 数学 位相空間 X において, 点列 {xn} が x∞ に収束しているとき, 集合 {xn; n ∈ N 1 2023/01/17 18:53
- 数学 ハイネボレルの被覆定理、内田伏一著 「集合と位相」定理22.1 1 2022/07/07 10:49
- 数学 局所コンパクト空間になることの必要十分条件についての質問 3 2022/03/24 16:17
- 数学 開集合・閉集合について 4 2022/11/04 13:53
- 数学 {Ai ; i ∈ N} を位相空間 X のコンパクト集合族としたとき, ∪∞i=1 Ai はコンパ 2 2023/01/17 18:57
- 数学 代数学でわからない問題があるので教えてください。 X:濃度nの有限集合 X上の演算を持つ代数系は何個 2 2022/11/13 06:03
- 数学 ある無理数に限りなく近い有理数は無理数ですか、有理数ですか。 13 2023/01/31 11:18
- 数学 順序集合における「反射律」の役割について 9 2022/05/09 23:01
このQ&Aを見た人はこんなQ&Aも見ています
-
餃子を食べるとき、何をつけますか?
みんな大好き餃子。 ふと素朴な疑問ですが、餃子には何をつけて食べますか? 王道は醤油とお酢でしょうか。
-
家・車以外で、人生で一番奮発した買い物
どんなものにお金をかけるかは人それぞれの価値観ですが、 誰もが一度は清水の舞台から飛び降りる覚悟で、ちょっと贅沢な買い物をしたことがあるはず。
-
忘れられない激○○料理
これまでに食べたもののなかで、もっとも「激○○」だった料理を教えて下さい。 激辛、でも激甘でも。 激ウマ、でも激マズでも。
-
いけず言葉しりとり
はんなりと心にダメージを与える「いけず言葉」でしりとりをしましょう。 「あ」あら〜しゃれた服着てはりますな 遠くからでもわかりましたわ
-
とっておきの「まかない飯」を教えて下さい!
飲食店で働く方だけが食べられる、とっておきの「まかない飯」。 働いてらっしゃる方がSNSなどにアップしているのを見ると、表のメニューには出てこない秘密感もあって、「食べたい!!」と毎回思ってしまいます。
-
開区間(a,b)はコンパクトでないことと、閉区間[c,d]がコンパクトであることがわかっている状況で
数学
-
コンパクトについての証明
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
R,R’は環とする。1_R,1_R’でそ...
-
「無限の一つ前の数字は何?」...
-
マイクロソフトの入社試験を見...
-
無限は実在しますか?
-
複素数 実数 集合 濃度
-
反射律・対称律・推移律
-
高2の数学の対数関数です。 真...
-
エクセルで(~以上,~以下)...
-
判別式の使う時とか使わない時...
-
年代と年台・・・どちらが正し...
-
【数学】 lim x→a ↑これってど...
-
「余年」の意味について教えて...
-
三角関数 -3分のπって3分の5...
-
三角関数の範囲について、 0≦x≦...
-
lim[n→∞](1-1/n)^n=1/e について
-
dx/dy や∂x/∂y の読み方について
-
1/0は何故発散すると言えるので...
-
電位係数を写真のようにおくと...
-
5406を13で割ったときの絶対値...
-
離れた列での最大値の求め方
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「無限の一つ前の数字は何?」...
-
無限に1を引くとどうなりますか?
-
無限は実在しますか?
-
無限より大きい何か
-
合成関数の定義域につきまして
-
メルセンヌ素数でない素数は無...
-
Vをn次元実ベクトル空間、ΓをV...
-
可算かどうか
-
開集合がコンパクトでない理由
-
無限次元ベクトル空間Vの基底S,...
-
自然数の無限数列は連続体濃度...
-
数1の集合のです。この問題の指...
-
実数の個数は無限個?
-
至急!数学の質問です。
-
複素数 実数 集合 濃度
-
アレフツーってありますか?
-
逆関数 高校数学にて y=x^2+2x+...
-
可能無限と実無限
-
実数列の従属について教えてく...
-
Nを自然数、-Nを負の整数全体の...
おすすめ情報