べき乗とは一体なんですか?
ウィキを見ても理解できませんでした。
2の2乗は2×2ですが、
2のマイナス2乗は一体どのような式なのですか?

このQ&Aに関連する最新のQ&A

A 回答 (4件)

算数の延長線上だけの概念だけだといまいち理解出来ないですよね。


べき乗って要は指数なんですけど、
そういう難しい話を出来るだけ捨てて、算数の世界で説明出来る位まで掘り下げて説明します。

例えば 10の2乗は100、10の3乗は1000となります。
これを数字の動きに目を合わせてもう一度、書いてみます。
00010.00000 ←これを2乗すると↓
00100.00000 //10という値が左に1つずれた結果が答え

00010.00000 ←これを3乗すると↓
01000.00000 //10という値が左に2つずれた結果が答え

こういう風に表す事が出来ます。
じゃあ、10のマイナス2乗ってなった場合はどうなるのかというと、
00010.00000 ←これを-2乗する↓
00000.01000 //10という値が右に3つずれた結果が答え

という答えになります。
1を基準点として、右や左にいくつずれるか。
これがべき乗なのです。


で、2のべき乗を考えた時は、
全部2進数で考える必要があります。
00010.00000 ←2進数で表した数値の2
00100.00000 ←2乗した結果。数値で言うと4
00010.01000 //-2乗した結果。数値で言うと0.25


これで何となく分かっていただけたでしょうか?
ちなみに37のx乗を計算するみたいな時があったとしたら、
それは37進数で考えるという計算が必要になるのです。
    • good
    • 57

「べき乗」とは、同じ数をいくつも掛け合わせたものです。


(2のマイナス2乗)は(2)を(マイナス2回)掛け合わせたものです。
しかし、数学の約束によって(2のマイナス2乗)は(1/2)を2回かけたものと定義されています。つまり1/4です。

「定義」ですから、これがイヤだ、という人は、別の定義をして(自分なりの数学の世界を構築して)も構いません。しかし「別の定義」をして前進すると「上記の定義」よりも必ずすごく不便なことに突き当たります。ですから、上記の定義は「先人の知恵」と考えてもいいでしょう。
    • good
    • 24

2 の n 乗を、2 を n 個掛け合わせたモノ


と捉えると、n が自然数でないとき
何が何だか解らなくなります。

n が自然数でないときの a の n 乗の意味は、
a の m+n 乗 = (a の m 乗)×(a の n 乗)
で決められています。
これにより、
2 の 0 乗 = 1。
従って、
2 の -2 乗 = (2 の 2 乗)分の 1。

むしろ、この事によって、
「-2 個掛け合わせる」ことの
意味が定まるのです。
    • good
    • 10

2の2乗=1×2×2


2のマイナス2乗=1÷2÷2
    • good
    • 35

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電卓の使い方 乗数はどうしたらよい?

長い数字を何乗もするとき、簡単にできる電卓のボタンはあるのでしょうか?電卓にもよるとおもいますが、一般的にどうしたらいいの?

Aベストアンサー

例えば15の2乗は、
15××=

15の3乗は、
15××==

となります。=を繰り返し(連続して)押すことがポイントです。

電卓のメーカーによっては、
2乗は、
15×=

3乗は、
15×==

と、×を二つ連続して押す必要はありません。

お持ちの電卓で試してください。

Q「累乗」と「べき乗」

「累乗」と「べき乗」、現在の数学の授業ではどちらの言い方がよく使われていますか? 

Aベストアンサー

私の数学の授業(高校)では、「べき乗」は一切使用していません。友人からも「べき乗」という言い方は、聞いたことがありません。
「累乗」が現在多く使われてるのでは、ないでしょうか。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q2の12乗、32乗・・・という計算の計算方法

2の3乗は2*2*2=8と計算できるのですが、
2の32乗など大きな数字の場合、どのように計算すればよいのでしょうか?
またこの計算の名前はなんと言うのでしょうか?

Aベストアンサー

 このような計算はべき乗といいます。
 Excelなどでは、^で表します。

例 2の3乗:2^3

 問題の32乗ですが、このように計算してみてはどうでしょう。

 2^32=((((2^2)^2)^2)^2)^2

 つまり、32=2^5=2×2×2×2×2 ですから、上のような式が成立します。
 べき乗の計算においては、たとえばn=m×pという場合、

 x^n=x^(m×p)
    =(x^m)^p

が成立します。このようにすれば、乗数が大きくなっても分解していくことで、段階的に計算していくことができます。

Q加重平均と平均の違い

加重平均と平均の違いってなんですか?
値が同じになることが多いような気がするんですけど・・・
わかりやす~い例で教えてください。

Aベストアンサー

例えば,テストをやって,A組の平均点80点,B組70点,C組60点だったとします.
全体の平均は70点!・・・これが単純な平均ですね.
クラスごとの人数が全く同じなら問題ないし,
わずかに違う程度なら誤差も少ないです.

ところが,A組100人,B組50人,C組10人だったら?
これで「平均70点」と言われたら,A組の生徒は文句を言いますよね.
そこで,クラスごとに重みをつけ,
(80×100+70×50+60×10)÷(100+50+10)=75.6
とやって求めるのが「加重平均」です.

QWordで、1ページを丸ごと削除するには?

1ページしか必要ないのに、真っ白な2ページ目がその下に表示されてしまった場合、この余分な2ページ目を一括削除(消去)する為に、何かいい方法があるでしょうか?

Aベストアンサー

<表示されてしまった場合>
これはそれなりに理由があるわけで、改ページや改行によって、次のページにまで入力が及んでいる時にそうなります。
特に罫線で表を作成し、ページの下一杯まで罫線を引いたときなどには、よくなる現象です。

さて、メニューの「表示」で段落記号にチェックが入っていないと、改行や改ページなどの入力情報が見えず、白紙のページを全て選択→削除してもそのままということが良くあります。
1 改行マークが白紙のページの先頭に入っていれば、それをBackSpaceで消してやる。
2 罫線を使っている場合は、それでも効果がない場合がありますが、その時は行数を増やしてやる。
などの方法があります。

Qキーボードで、Λ(階乗記号)の出し方

キーボードで、Λ(階乗記号)の出し方を教えてください。
Backspaceキーの2つ左のキーを押すと、“Λ”(階乗記号)が
出るはずですが、“~”が出ます。どうしたら出るでしょうか?

Aベストアンサー

 「^」のことですか?
 もしかして、SHIFTキーと一緒に押していませんか?
 

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q「以降」ってその日も含めますか

10以上だったら10も含める。10未満だったら10は含めない。では10以降は10を含めるのでしょうか?含めないのでしょうか?例えば10日以降にお越しくださいという文があるとします。これは10日も含めるのか、もしくは11日目からのどちらをさしているんでしょうか?自分は10日も含めると思い、今までずっとそのような意味で使ってきましたが実際はどうなんでしょうか?辞書を引いてものってないので疑問に思ってしまいました。

Aベストアンサー

「以」がつけば、以上でも以降でもその時も含みます。

しかし!間違えている人もいるので、きちんと確認したほうがいいです。これって小学校の時に習い以後の教育で多々使われているんすが、小学校以後の勉強をちゃんとしていない人がそのまま勘違いしている場合があります。あ、今の「以後」も当然小学校の時のことも含まれています。

私もにた様な経験があります。美容師さんに「木曜以降でしたらいつでも」といわれたので、じゃあ木曜に。といったら「だから、木曜以降って!聞いてました?木曜は駄目なんですよぉ(怒)。と言われたことがあります。しつこく言いますが、念のため、確認したほうがいいですよ。

「以上以下」と「以外」の説明について他の方が質問していたので、ご覧ください。
http://oshiete1.goo.ne.jp/kotaeru.php3?qid=643134

Q「いずれか」と「いづれか」どっちが正しい!?

教えて下さいっ!
”どちらか”と言う意味の「いずれか」のかな表記として
「いずれか」と「いづれか」のどちらが正しいのでしょう???

私は「いずれか」だと思うんですが、辞書に「いずれか・いづ--。」と書いてあり、???になってしまいました。
どちらでもいいってことでしょうか?

Aベストアンサー

「いずれか」が正しいです.
「いづれ」は「いずれ」の歴史的かな遣いですので,昔は「いづれ」が使われていましたが,現代では「いずれ」で統一することになっていますので,「いずれ」が正しいです.


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報