現在リートフェルト法の勉強をしているのですが、
判らないところがありましたので
質問させてください。
XRDの回折強度の補正の時に用いる
ローレンツ因子の式が,なぜ
L = 1 / sin(theta)*sin(2theta)
になるのか判りません。
1/sin(theta)はどこから出てくるのでしょうか?

A 回答 (1件)

粉末回折データから構造パラメーターを求めるのが、リートベルト法であるので、多結晶からの積分強度を求める式にもどると、見えてきます。



回折角θから微小回転角Δαの間で、Bragg反射を起こす全ての(hkl)面からの反射を考える。
粉末試料からのhkl反射の全積分強度Pは、
(1個の結晶粒からの強度)×(θΔαの中にある結晶粒の数)×(強度測定面上の面積)
を、全方位、測定面の全面積で積分したものであり、
  P=K×(1+(cos2θ)^2)/(2sinθ)
Kは、θに依存しない項。

しかし、実際には、ディフラクトメータなどで測定されるのは、半頂角2θの円錐の底面の円周上の極一部。試料からR離れた点において、この円錐の底面の円周は、
  2×π×R×sin(2θ)
とかけ、単位長さ当たりの強度P'は、
  P'=P/(2×π×R×sin(2θ))

したがって,
P=K’× (1+(cos2θ)^2)/(sinθ×sin2θ)となります。
 K’は、θに依存しない項。
 
Lorentz偏光因子は、
   (1+(cos2θ)^2)/(sinθ×sin2θ)
または、
  (1+(cos2θ)^2)/(2(sinθ)^2×cosθ)

となります。
(ローレンツ因子は、 1/(sinθ×sin2θ) )

#文章で書くと、分かりにくいですねぇ
詳細な計算方法は、教科書を参照してください。
参考URLに、泉先生のHPを示します。

参考URL:http://homepage.mac.com/fujioizumi/
    • good
    • 0
この回答へのお礼

お礼が遅れてすみませんでした。
ご回答いただいてから、相当考えたり検索したり
しまして、ようやく理解しました。
L = 1/sin^2(theta)*cos(theta) =

1/sin(2theta) : 単結晶のローレンツ因子
*cos(theta) : 反射に関与する粒子の割合
*1/sin(2theta) : ご回答中で説明の項

ありがとうございました。本当は10000ポイントほど
差し上げたいのですが、20ポイントで勘弁してください。

お礼日時:2003/05/10 16:00

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

QX線のKαって何を意味するのでしょう?

タイトルのまんまですが、XRD、XPSなどで使われる特性X線のCu-Kα線、Mg-Kα線のKαってなにを意味するものなのでしょうか?
ちょっと気になった程度のことなので、ご覧のとおり困り度は1ですが、回答もきっとそんなに長くならないんじゃないかと思うのでだれか暇な人教えて下さい。

Aベストアンサー

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻やM殻の電子は安定した状態を保とうと、K殻へ落ち込みます。このとき(K殻のエネルギー)-(L殻のエネルギー)に相当するエネルギーがあまるので、これがX線となりこのエネルギーをもつX線が発生します。

そこで、potemkineさんの質問にあるとおり、Kαとかの命名法ですが、Kに相当するものは電子が衝突して飛び出した殻を示し、αは飛び出した殻に対していくつ外側の殻から電子が飛び出したのかを示すもので、1つ上からならα、2つ上ならβ。3つ上ならγといったようにあらわします。
例えば、K殻の電子が飛び出し、そこをM殻が埋めた場合(2つ上の準位)はKβ、L殻の電子が飛び出しそこをM殻が埋めた場合はLα
ちなみに下からK殻、L殻、M殻、N殻の順番です。

エネルギーや半値幅(エネルギーの広がり)の面から一般に用いられてるX線は、AlKα、CuKα、MgKαなどです。

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻や...続きを読む

QBragg反射

今、X線を照射して、各角度におけるピークを見つけて、Bragg角を見つける実験をしています。しかし、少し疑問に思う箇所があるので質問させて頂きたい次第です。

KClとKBrのBragg角を見つけているのですが、どちらも同じ結晶構造です。しかし、Bragg Peakにおいて、同じ結晶構造を持つKBrに見られる反射が、なぜKClでは見られないのでしょうか??自分的には同じ結晶構造だからほぼ同じBragg Peakが見られると思っていたのですが…

どなたかこの理由や原理を教えていただけないでしょうか?お願いします。

Aベストアンサー

No.1です。KClとKBrは同じNaCl結晶なので、格子定数の違いを除けば同じ(hkl)指数のピークが観測されるはずですね。

ですが、K^+イオンでの原子散乱因子(原子ごとのX線の散乱強度で、X線の波長や散乱角に依存しますが、とりあえず一つの原子では一定とします。)をf_K、Cl^-イオンの原子散乱因子をf_Clとしますと、Brag Peakにはその強度がf_K+f_Clに対応するピークと|f_K-f_Cl|に対応するピークとがあります。つまりK^+での散乱X線とCl^-での散乱X線とが強めあう場合と弱めあう場合があるということです。

X線がどのように結晶中で散乱されるかといいますと、トムソン散乱と呼ばれる、各原子の電子の電場との相互作用によって散乱されます。そしてその強度は原子のもつ電子の数にほぼ比例します。

K^+イオンとCl^-イオンは電子数がどちらもArと同じ数なので、原子散乱因子f_Kとf_Clはほぼ同じになります。ですので、KClでは強度がf_K+f_Clになるピークのみが観測され、|f_K-f_Cl|に対応するピークはほとんど見えません。

一方KBrでは、Br^-イオンの電子数はKrと同じでK^+イオンとは差があるので、原子散乱因子にも差があります。なので|f_K-f_Br|の強度のピークも観測できます。ですが、KBrの場合でもほぼ一つおきに強いピークと弱いピークが現れていると思います。(たしか)

以上のことは結晶構造因子というのを計算すると(単位格子の原子の並び方さえわかっていれば計算できます)、どの(hkl)指数のピークがどの程度の強度で観測されるかわかるので、ほぼすべて説明できます。

No.1です。KClとKBrは同じNaCl結晶なので、格子定数の違いを除けば同じ(hkl)指数のピークが観測されるはずですね。

ですが、K^+イオンでの原子散乱因子(原子ごとのX線の散乱強度で、X線の波長や散乱角に依存しますが、とりあえず一つの原子では一定とします。)をf_K、Cl^-イオンの原子散乱因子をf_Clとしますと、Brag Peakにはその強度がf_K+f_Clに対応するピークと|f_K-f_Cl|に対応するピークとがあります。つまりK^+での散乱X線とCl^-での散乱X線とが強めあう場合と弱めあう場合があるということです。

X...続きを読む

QX線回折・・・試料が粉末と固体による違い?

毎度毎度X線についてです。
イマイチ私の言ってる意味がわからないかもしれませんが、質問です。

 試料が粉末か固体かによる違いは何でしょうか?つまりですね、なぜ粉末状にするのか、ということです。固体を砕けば粉末になりますよね?固体では調べられないことが、粉末なら調べられるということなのでしょうか?
 本で調べたところ、多結晶体(粉末も)は回折が様々な方向におこるそうなのですが、それでしょうか?

Aベストアンサー

> 固体では調べられないことが、粉末なら調べられるということなのでしょうか?

上の記述で「固体」を「結晶」に替えれば、実験的な利便性という意味で、その通りと言えます。

Braggの回折条件 2d・sinθ=nλ (d:面間隔,θ:回折角,λ:波長) [*] はご存知と思います。また、一つの結晶の中には、面間隔の異なるBragg反射面が多数あり、それぞれが結晶に対すして固有の角度(面方位)をもっていることはよろしいでしょうか。

波長の決まったX線を、一つの結晶に当てることを考えて見て下さい。[*]の条件を満たすとき、そのBragg面の鏡面反射の方向に回折線が出ます。結晶中のBragg面はそれぞれ特定の方向を向いていますから、ある方向から単色X線を入れても一般に[*]は成立しません。そこで、入射X線の向きを変えながら、Bragg条件に合うθの面を拾い上げていくという操作が行われます。ただし、結晶中のBragg面は何通りもありますから、θスキャンのためには、常に入射線の鏡面反射となる方向の回折線だけを検出するようにします。これがディフラクトメータ法です。

しかし、このようなスキャンでは、結晶の置き方で決まる、ある仮定された一つの面についての回折条件(θ値)を探ることができるだけです。この結晶中の様々なBragg面の情報をそろえようと思えば、結晶の向きを僅かずつ変えながら、無数の測定を繰り返す必要が生じてしまいます。そこで考案されたのが、お尋ねの粉末法と呼ばれる手法です。結晶を粉々にすることで、全てのBragg面に対して、ディフラクトメータが検知する反射面に一致する確率を与えてしまえば、1回の測定で全ての面のθスキャンができ、結晶固有の回折線パターンが得られるというものです。(まさにコロンブスの卵!)

粉末にして向きがバラバラになっても、常に鏡面反射方向だけの回折を検出するように工夫すれば、Bragg条件の式がそのまま使えるというところがミソです。

> 固体では調べられないことが、粉末なら調べられるということなのでしょうか?

上の記述で「固体」を「結晶」に替えれば、実験的な利便性という意味で、その通りと言えます。

Braggの回折条件 2d・sinθ=nλ (d:面間隔,θ:回折角,λ:波長) [*] はご存知と思います。また、一つの結晶の中には、面間隔の異なるBragg反射面が多数あり、それぞれが結晶に対すして固有の角度(面方位)をもっていることはよろしいでしょうか。

波長の決まったX線を、一つの結晶に当てることを考えて見て下さい。[*]の条件を満た...続きを読む

Q結晶中の電子の密度とフーリエ変換

結晶物理学をほぼ独学で学んでいる途中なのですが、なぜ結晶中の電子密度が下の式のように表されるのか理解できなくて困ってます。

結晶は周期的に並ぶので、Tを格子並進操作とすれば電子密度はn(r)=n(r+T)が成り立つのは分かります。ですがなぜ位置xの電子密度が下の第1式のようになるのか理解できません。周期的だからといっても平面波の式を使って表される理由や、第2式のように突然平面波に逆格子ベクトルが出てくるのか分かりません。それにシグマ記号の下にあるpは何を意味しているのかも分からないです。参考書には「pは整数」と書いてあるだけでどういう量でどこからやって来たのでしょうか。同様に第2式のシグマ記号の下の逆格子ベクトルGも何故あんな所にいるのでしょうか。数学ではシグマの下は「k=0」などの和を取り始める初項を意味する物が入りますが、Gの文字だけがあるだけでどのように和を取っているのですか?

そもそもどうしてフーリエ変換で電子密度が表せるのでしょうか。フーリエ変換はある程度やりましたが、数学的な計算処理が主で実際の物理量を表現できるという原理が想像できません。またそれぞれの式のnの表している量は具体的に何においての密度なのでしょうか。添え字があるのでそれに対応させてはいるのでしょうが、本にはn_pやn_Gの説明がありません。n_Gも電子の密度を表しているのだと思いますが、Gは何を意味しているのですか?

質問

(1)第1式のように平面波の式とフーリエ展開を用いて電子密度を表せる理由
(2)pという文字の意味と、シグマ記号の下にあるpやGは何を意味しているのか
(3)n_pとn_Gは何を表しているのか。第3式はどういった物理量を体積分しているのか

(1)、(3)に関しては数式より、おおまかなイメージで説明してもらえると有り難いです。詳しい方がいらしたら教えて欲しいです。お願いします。m(__)m

結晶物理学をほぼ独学で学んでいる途中なのですが、なぜ結晶中の電子密度が下の式のように表されるのか理解できなくて困ってます。

結晶は周期的に並ぶので、Tを格子並進操作とすれば電子密度はn(r)=n(r+T)が成り立つのは分かります。ですがなぜ位置xの電子密度が下の第1式のようになるのか理解できません。周期的だからといっても平面波の式を使って表される理由や、第2式のように突然平面波に逆格子ベクトルが出てくるのか分かりません。それにシグマ記号の下にあるpは何を意味しているのかも分...続きを読む

Aベストアンサー

(1)任意のなめらかな周期関数はフーリエ級数展開できます。

(2)展開係数のラベルです。フーリエ級数展開はフーリエ変換を離散化したものなので積分が和に置き換わっているわけです。Gはpを単に3次元に拡張したものです。

(3)ある周期関数を色々な周期の指数関数の重ね合わせと皆しているわけですが、各指数関数がどれくらいの重みで足されているかを表す量です。そういう意味でスペクトルとも言えるのでは。

QXRDの単位について

実験でXRDを使用しておりますが、縦軸の「intensity」の意味がよくわかりません。どのような原理でintensityを出しているのでしょうか?合わせて、その単位である「count」「cps」についてもその意味を教えていただきたいと思います。どなたか回答をお願いいたします。

Aベストアンサー

intensityは回折されたX線の強度ですが、ここでは光子を計数管で数えているようなので、X線光子数と考えてよいでしょう。
一般に、スペクトルの縦軸は観測される光やイオンなどの強度や数に対応します。
UV-visのような古典的なものから、マススペクトルにいたるまで。
XRDは横軸エネルギーではないのでスペクトルというのか良く分かりませんが。
countはX線光子のカウント数、cpsは"count per second"で1秒当たり何個の光子が検出器に入ったかのことでしょう。

Qエクセル(Excel)で、数値を一定の有効数字で表示したいのですが…

エクセル(Excel)の書式設定の表示形式では数値を選択すると、小数点以下の桁数を揃えることができますが、同じ感覚で有効数字を一定にして表示させるにはどんな方法があるでしょうか?
例えば、0.01234、0.1234、1.1234、11.1234、111.1234という五つの値を、有効数字3桁を指定して表示して、順に0.0123、0.123、1.12、11.1、111という風に自動的に表示してくれる表示形式、あるいは関数を探しています。
事務計算で小数点以下何桁というのが重要であるように、技術計算ではこのように有効数字を揃えたい場合が多いと思いますので、どなたかご存じの方、お教えください。
なお、指数形式では似たような結果になりますが、わかりにくい表示なので使いたくありません。
よろしくお願いいたします。

Aベストアンサー

◆こんな方法もありますよ
=ROUND(A1,2-INT(LOG(ABS(A1))))

★「0」を考慮すると
=ROUND(A1,2-INT(LOG(ABS(A1)+(A1=0))))

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。

Q温度因子

温度因子の意味を調べているのですが、化学大辞典などを見ても、エックス線のピークの強度比であるとか、そんなかんじでしか載っておらず、よく分かりません。温度因子が小さいということが一体どういうことなのか、大きいとどういうことなのか、を誰か教えてください。ちなみに、構造の転移の分野をやっているうえで、温度因子を調べることになったので、それに関連して教えていただけるとうれしいです。お願いします。

Aベストアンサー

X線で出てくる理由は、温度因子がX線回折による構造解析に欠かせないものだからです。化学ではなく物理の範囲です。といっても化学にも大変重要ですが。従って、X線回折要論(おすすめ)といったX線系の本を調べるのが手っ取り早いです。
世の中の物質(結晶)は、何かしら決まった構造をとっています(体心立方構造とかね)。その図を見れば、原子はあたかも静止しているように感じますが、実際にはどんな温度領域でもわずかに揺らいでいます。その揺らぎのパラメータが温度因子です。すなわち、高温になればなるほどその原子の揺らぎは大きくなっていきます。これは「温度因子が大きい状態」です。低温にすればするほど揺らぎは小さくなります。これは「温度因子が小さい状態」です。絶対零度になると結晶構造が崩壊するという意味は、この温度因子が極限まで小さくなり、原子の揺らぎがとまる事を意味します。
構造相転移で温度因子は大変重要です。たとえば、ある結晶がー100°から300°の温度領域で、立方晶構造をとっているとします。あなたはその温度領域でのより詳しい構造が知りたい。じゃあ、どうすれば?温度を低温側(-100°に近い側)にして実験するのです。そうすれば温度因子は小さくなり、すなわち原子の揺らぎは小さくなり、測定がしやすくなるのです。X線などではそのピークの幅などを解析します。そのピーク幅を決めるのは原子の揺らぎです。従って、温度因子を小さくすればピーク幅も小さくなり、より細かく正確な解析が可能になるのです(正確には違いますが・・・)。
まとめると、
温度因子 小 → 原子の揺らぎが小さい=低温
温度因子 大 → 原子の揺らぎが大きい=高温
です。正確に議論するとこの説明は「なんじゃこりゃ!」となりますが、さわりだけならこんなものでしょう。

X線で出てくる理由は、温度因子がX線回折による構造解析に欠かせないものだからです。化学ではなく物理の範囲です。といっても化学にも大変重要ですが。従って、X線回折要論(おすすめ)といったX線系の本を調べるのが手っ取り早いです。
世の中の物質(結晶)は、何かしら決まった構造をとっています(体心立方構造とかね)。その図を見れば、原子はあたかも静止しているように感じますが、実際にはどんな温度領域でもわずかに揺らいでいます。その揺らぎのパラメータが温度因子です。すなわち、高温になればな...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング