流体力学に関して質問です。複素(速度)ポテンシャルに関するものです。
1.複素平面状において速度UのX軸方向の一様流と原点に強さqの吹き出しがあるときの複素ポテンシャルを記述せよ
2.また、1の複素ポテンシャルで示される流れ場においてよどみ点の位置を求めよ
3.よどみ点を通る流線方程式を求めよ
という問題です。
教科書には複素ポテンシャルというものはW(z)として与えられているのですが、覚えなければならないものなのでしょうか??
勉強始めたばかりなので、参考にさせていただきたいと考えています。
上記の問題を解ける方がおられればよろしくお願いいたします。
No.1ベストアンサー
- 回答日時:
地球物理を習ってる大学生です。
曖昧な記憶ですがお答えします。
(1)
この流れの複素速度ポテンシャルは,重ね合わせの原理により
f(z) = Uz + (Q/2π)log z
で与えられます。(右辺第1項が一様流、第2項が湧きだし)
(2)
z を極座標で表して(z = re^iθ),速度ポテンシャルと流れ関数を求めると
f(z) = Ure^iθ + (Q/2π)log re^iθ = {U r cosθ + (Q/2π)log r}+ i{Ur sinθ + (Q/2π)θ}
となるので,速度ポテンシャルΦ と流れ関数Ψ は
Φ = Ur cosθ + (Q/2π)log r 、 Ψ = Ur sin θ + (Q/2π)θ
と求まります。
x 軸に沿った流速をu_x とすると,速度ポテンシャルよりθ = 0; r = x とおいて
u_x = ∂Φ/∂x = U + (Q/2π)*1/x
となります。u_x がゼロになる位置がよどみ点なので、x = -(Q/2π)/U
この点は湧き出しによる速度と一様流速とがちょうど打ち消しあいます。
(3)の流線方程式ってなんでしたっけ?
ごめんなさい。
あと、ポテンシャルを覚えておいた方がいいかは分からないです。
ただ、これくらいなら覚えておいてもいいかもしれませんね。
あと、独学ということですので
参考になるURLを載せておきます。
http://kenzou.michikusa.jp/FL-Dyn/FluidDyn.html
参考URL:http://kenzou.michikusa.jp/FL-Dyn/FluidDyn.html
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
電磁気の問題です
-
中が中空の球の慣性モーメント...
-
-cosθがsin(θ-π/2)になる理由が...
-
電磁気学
-
有限長ソレノイドコイルの中心...
-
なぜ、θが微小なとき、tanθ≒θと...
-
なぜsinθはθに近似できるのです...
-
くさび状態の2物体間のすべりの...
-
機械設計のねじ
-
矩形波duty比を変えた場合のフ...
-
課題なのですが、別解での3cosθ...
-
正弦波の複素数表示
-
高校物理の質問です。 【問題】...
-
無損失線路の入力インピーダン...
-
解き方を教えてください!お願...
-
非保存力の経路による仕事の計算
-
物理
-
√3sinX−cosX≦√3 (0≦θ≦2π) のと...
-
磁気モーメントの歳差運動~ハ...
-
オシロスコープにおいて。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
なぜ、θが微小なとき、tanθ≒θと...
-
電磁気の問題です
-
高校物理の質問です。 【問題】...
-
-cosθがsin(θ-π/2)になる理由が...
-
有限長ソレノイドコイルの中心...
-
中が中空の球の慣性モーメント...
-
√3sinX−cosX≦√3 (0≦θ≦2π) のと...
-
機械設計のねじ
-
なぜsinθはθに近似できるのです...
-
格子定数の求め方,近似について
-
くさび状態の2物体間のすべりの...
-
慣性モーメント
-
空間平均について
-
矩形波duty比を変えた場合のフ...
-
sinとcosの使い分けの仕方を教...
-
くぼみの表面積
-
速度の合成
-
sinx,sin2x・・・の規格化定数...
-
トグル機構 Wikipedia
-
【数学】梯子の角度はハシゴの...
おすすめ情報