
資本量をk,産出量をyとします。
生産関数をy=f(k)と表す。(資本をkだけ投入するとyだけの算出が得られるという意味の式です)
いま、産出量の資本弾力性をαとします。
これは、資本を1%増やしたとき産出量は何%増えるかを表したものであり、(dy/y)/(dk/k)で定義されk*f’(k)/f(k)になります。
ここからが質問なのですが
もし2つの経済において産出量にX倍の違いがあれば、
資本量はX^(1/α)倍違っていなければならないそうです。
一応説明はされてあって、『産出量にX倍の差があれば、対数をとると産出はlogXだけ違わなければならない。いま、αは産出に対する資本弾力性なので資本量は対数値で、(logX)/αだけ違っていなければならない。
よって、資本量はe^{(logX)/α}つまり、X^(1/α)倍違う。』
これでもよく分からなくて、「αは産出に対する資本弾力性なので資本量は対数値で、(logX)/αだけ違っていなければならない。」
のところが、しっくりきません。
簡単なことかもしれませんが、分かった方、教えて頂けないでしょうか?
よろしくお願い致します。
No.2ベストアンサー
- 回答日時:
>微分方程式はといたことがないですが、調べて計算してみると、おっしゃった形になりました。
変数分離型というものですよね。
はい。変数が分離できるので簡単に計算できます。
>C=e~(積分定数)で良いんでしょうか?
はい。それでも良いと思います。ただ、わざわざe^(積分定数)という形にしなくても、ある定数であるということを示すためにCを使っています。見づらくなるからこうしているんだとでも思ってください。この例は追加の質問の回答で触れます。
>『産出量はX倍違うので、
y1=y2*X
とすると、 』
とあって、最後の部分で
『よって、
y1=X^(1/α)*y2 』
何かおかしいような気がするのですが…。
X=X^(1/α) !?
すみません、タイプミスです(^^ゞ
>(1')式と(2)式の比を取ると、
X=(y1/y2)^α
y1/y2=X^(1/α)
よって、
y1=X^(1/α)*y2
は、
X=(k1/k2)^α
k1/k2=X^(1/α)
よって、
k1=X^(1/α)*k2
に、訂正します。
>y1=C*k1^α・・・(1)
y2=C*k2^α・・・(2)
のCはどちらも同じ値をとる定数なのですか?
私は違っても良いように思えますが…。
同じだとしたらなぜですか?
最初の質問と重複しますが、Cを使った形の解を一般解と呼びます。これは、微分方程式が与えられたら、どんな条件でもその形になります。(Cの値だけが異なる。まれに、全く違う形になることもあります。)
そのため、微分方程式を解くときには条件が与えられます。そして、Cには定数が代入されます。例えば、最初の問題で、「ある国での産出量がy0、資本量がk0であった。」という条件が与えられていたとき、
No.1での回答の一般解に条件を代入して、
y0=C*k0^α
よって、
C=y0/k0^α
が得られます。
これを一般解に代入して、
y=y0/k0^α*k^α
が、本当の解として得られます。
そして、この産出量、資本量、資本弾力性の関係は、条件が同じなら、どのような変数の値に対しても成り立つと考えます。が、当然、半導体生産に投資する場合と自動車生産に投資する場合のように条件が異なればCの値は異なります。
従って、今回の問題の場合、条件が異なるとは書いてないので、Cは同じ値を持ちます。
No.1
- 回答日時:
こんにちは。
資本弾力性は
α=(dy/y)/(dk/k)=(dy/dk)*(k/y)
=k*f'(k)/f(k)
と表わされて、これが定数とします。
そうすると、この式はyについての微分方程式とみれます。(f(k)では考えにくいので、yについての式として考えます。)
dy/dk=α*y/k
これをyについて解くと、
y=C*k^α ・・・Cは定数
が得られます。
ここで、1,2という2つの経済で、資本量と産出量をそれぞれ、k1, k2, y1, y2とします。そうすると、それぞれの産出量は、
y1=C*k1^α・・・(1)
y2=C*k2^α・・・(2)
となります。
産出量はX倍違うので、
y1=y2*X
とすると、
(1)式は
y2*X=C*k1^α・・・(1')
(1')式と(2)式の比を取ると、
X=(y1/y2)^α
y1/y2=X^(1/α)
よって、
y1=X^(1/α)*y2
1が2のX倍の産出量を持っていた場合、
資本量はX^(1/α)倍になると言えます。
途中、計算を端折った部分があって、わかりにくいと思うので、わからなかった部分をまた補足してください。
この回答への補足
微分方程式はといたことがないですが、調べて計算してみると、おっしゃった形になりました。
変数分離型というものですよね。
C=e~(積分定数)で良いんでしょうか?
後は質問です。
なんとなく分かるのですが、
『産出量はX倍違うので、
y1=y2*X
とすると、 』
とあって、最後の部分で
『よって、
y1=X^(1/α)*y2 』
何かおかしいような気がするのですが…。
X=X^(1/α) !?
丁寧な解答をありがとうございます。
すみません。もう少し質問させてください。
まず、
y1=C*k1^α・・・(1)
y2=C*k2^α・・・(2)
のCはどちらも同じ値をとる定数なのですか?
私は違っても良いように思えますが…。
同じだとしたらなぜですか?
(1')式と(2)式の比を取ると、
X=(y1/y2)^α
y1/y2=X^(1/α)
のところですが、もし上で質問させていただいた、Cが同じならX=(k1/k2)^α
になると思いますが、X=(y1/y2)^α
にはならないような気がするのですが…。
長々と質問してすみません。
よろしくお願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
今更で申し訳ないのですが、疑...
-
カテナリー曲線の長さの求め方...
-
与式とは?
-
1=√1=√(-1)(-1)=√(-1)√(-1)=i・...
-
未知数4つ、式4つの方程式の...
-
中2数学連立方程式の応用、増...
-
複素数平面上の点z(z≠i/2)に...
-
中学関数 Xの増加量が2のときの...
-
中学数学で1次式を選ぶ問題 分...
-
三次方程式x^3+3x^2+(a-4)x-a=0...
-
断熱変化の式pV^k=constをいろ...
-
次の1次分数関数についてご教...
-
数学についてです。例えば2(x+2...
-
一軸圧縮強度quと粘着力Cの...
-
連立方程式の解法に代入法、加...
-
伸び率のマイナス数値からのパ...
-
お医者さんプレイのやり方
-
3分の2時間を 分に直すにはどー...
-
ICOCAアプリで現金チャージした...
-
(1×6分の1)+(2×6分の1)+...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
自然数の列を次のような群に分...
-
中学数学で1次式を選ぶ問題 分...
-
与式とは?
-
三次方程式x^3+3x^2+(a-4)x-a=0...
-
私は待ち行列でo(Δt)の意味が分...
-
連立方程式はなぜ解ける?
-
複素数の問題です
-
tanh(x)がx>>1のときの近似式
-
中2数学連立方程式の応用、増...
-
近似式の定理で、値 a が値 b ...
-
VBAで除算の商・・・
-
方程式に関する質問です
-
連立方程式の解法に代入法、加...
-
中学2年 数学 連立方程式の利用...
-
エルミート行列について
-
一軸圧縮強度quと粘着力Cの...
-
曲率のパラメータ変換について
-
比例式の値を求める問題
-
漸化式の問題です。3行目から5...
-
アルキメデス螺旋と対数螺旋の...
おすすめ情報