
ナビエ・ストークスの式の導出に当たり
…これら3方向の運動量の式は一括してベクトルの式として書くことができる。
∂(ρu)/∂t+∇・ρuu=-∇p+∇・τ+ρg …(*)(注:τ,g,および3つのuは太字,つまりベクトル)
左辺を展開して連続の式を用いると次式が得られる。(注:連続の式 ∂ρ/∂t+∇・(ρu)=0)
ρDu/Dt=-∇p+∇・τ+ρg …(**)
とテキストにあります。右辺が変わっていないので左辺がいずれも等しいはずなのですが
実質微分の定義を使ってρDu/Dtを普通の微分で表しても∂(ρu)/∂t+∇・ρuuになりません。(*)式は検査体積の運動量保存を考えることで出てきます。つまり,検査体積内の運動量変化は流入する流体の持つ運動量と圧力・応力による表面力,体積力の力積の合計として導かれます。導出過程を見ても恐らく(*)はあっているような気がします。ということは(**)が間違っている?
ナビエ・ストークスの式の導出がわかる方は(*)か(**)のどちらが間違っているのでしょうか?(**)のτにニュートン流体の応力テンソルを代入するとナビエ・ストークスの式が出てくるはずなのですが,(**)が間違っていれば正しいナビエ・ストークスの式は導かれませんし,あっているなら反対に(*)が間違っているということになると思います。
それとも(*)と(**)は同値なのでしょうか。何度計算してもうまく変形できないのですが。よろしくお願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
電磁場中の荷電粒子の確率密度...
-
両辺を違う文字で積分すること...
-
振り子の周期T[s]を振り子の長...
-
単振動のエネルギー保存則の導...
-
S={(2+ε^2)*√(1-ε^2)}/(...
-
実在気体のジュールトムソン係...
-
交流ブリッジ回路のインピーダンス
-
[0,1]区間上の関数f(x)=x^2に対...
-
二次元極座標と微小距離
-
大学物理
-
eのlog2乗がなんで2になるので...
-
logについて
-
log(-1)=?
-
eのマイナス無限大乗
-
質問です。 -3の逆数って何で...
-
有理化しないといけない問題と...
-
logの問題でルートが出てきたと...
-
分数の計算で分子が0になったら...
-
一個当たり15秒の製品を1時間で...
-
プール計算って何ですか?
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報