データ間に差がないことを統計的に述べたい場合,どのような検定手法を実施すればよいのか?
ということで,悩んでいます.
例としまして,以下のような条件で実験を行い,実験の結果を統計的にみて差がない(差がみられない?)と述べたい場合,3要因の分散分析を実施すればよいのでしょうか?御教示・御助言よろしくお願いします.
例)
2つの異なる六面サイコロ(サイコロA,サイコロB)を,朝昼晩に600回ずつ振り,サイコロの目を記録した.
この結果をもとに,何らかの統計手法を実施し,サイコロAとサイコロBに差がないことを述べたい.
私の予想では3要因の分散分析を行い,有意差が見られなければ,2つのサイコロに差がない(差がみられない?)といえる,と予想しているのですが誤っていますでしょうか?
No.5ベストアンサー
- 回答日時:
誤っています.
> サイコロAとサイコロBに差がない
を実験で証明するということは,どうやったってできないんです.判定出来るのは「差がある」か「何も言えない」(せいぜい、「これだけの実験じゃ差があるとは言えなかった」としか言えない)かのどちらかだけ.
「サイコロAとサイコロBに差がない」という命題は「帰無仮説(null hypothesis)」と呼ばれ,実験によってこの命題は否定される(このとき「差がある」と言える)か,あるいは無に帰す(このときは何も言えない)かのどちらかしかありません.帰無仮説が肯定されるということは決して起こらないのです.
どういうことなのかといいますと:
もっと具体的に
H1:「出る目の平均値が同じだ」
という帰無仮説を考えて,二つのサイコロの出目を100回記録してそれぞれ平均を取りその差を計算したら,計算結果が丁度0になったとしましょう.すると,この実験結果によってH1は否定できない.ではH1は正しいのか.
ここで
H2:「サイコロAの出る目の平均値はサイコロBの出る目の平均値より0.001だけ大きい」
という帰無仮説を考えると,同じ実験結果はH2も否定しない.ところがH1とH2は絶対に両立しない,互いに矛盾した命題ですから,両方とも正しいということはありえません.だからH1が正しいのかH2が正しいのかまだ決まりません.
そこでもっとうんと沢山実験すれば,「H1は否定できないがH2は否定できる」という状況が生まれるかもしれません.が,その時にも
H3:「サイコロAの出る目の平均値はサイコロBの出る目の平均値より0.000001だけ大きい」
はやはり否定できないでしょう.実験の回数が有限であるかぎり,どんなに繰り返したところで,「H1が正しい(つまり,H1と矛盾するあらゆる命題は誤りだ)」という結論は得られない.
と,そういう事情なんです.
では、どんなことなら実験で言えるのかというと、たとえば
H4:「サイコロAもサイコロBも、振るたびに独立であり、かつ、サイコロAの出る目の平均値とサイコロBの出る目の平均値との差の絶対値は0.01以上である」
という帰無仮説を考える。「振るたびに独立」とは「過去の出目とは無関係に出目が決まる」という意味であり、従って、サイコロAの1の目が出る確率はいつもある一定値である。他の目も同様で、またサイコロBについても同様である。この帰無仮説によってひとつの確率モデルが決まります。このモデルに従って、「N回実験したときにサイコロAの出る目の平均値とサイコロBの出る目の平均値との差の絶対値が偶然の偏りのせいでd未満になってしまう確率P(N,d)」が確率論を使って理論的に計算できます(なかなか難しいですが)。
さて、実際にN回実験してみればその結果からdが決まります。これを使ってP(N,d)を具体的に算出してみたところ、非常に小さな値(たとえば0.0001%)になったとしましょう。すると、もし命題H4がもし正しいのだとするなら、こんな実験結果dが偶然出るなんてことはまずあり得ない。なので、H4は否定してよろしかろう。(このとき、「H4を否定する」という判断が誤っている確率[有意水準]はP(N,d)である。)この場合、命題H4の否定、すなわち「サイコロAかサイコロBは振るたびに独立ではないか、あるいは、サイコロAの出る目の平均値とサイコロBの出る目の平均値との差は0.001未満である」と言えるわけです。
No.8
- 回答日時:
「帰無仮説を肯定する」「対立仮説を棄却する」ということをやる「検定」は検定ではない.全て誤りです.そして「データに差がないと断定」されることは決してありません.適当な教科書を丁寧に読めばこれらのことが分かるでしょう.(しかし,大嘘が書いてある本がときどき見つかるのも,残念ながら事実なんですよ.)
一方,たとえば「製品Aの代用として製品Bが使える」と言いたい場合には,決して「データに差がないと断定」することを求めている訳ではありません.ただ,それらの製品のいくつかの性能だけについて注目して,「どの性能についても,製品Aの性能がばらつく範囲の中に,製品Bの性能のばらつきがほとんど収まっていること(あるいは,製品Aの性能を,製品Bの性能がほとんどの場合越えていること)」を示せば足りる.なので「間違う確率が最小になるように」という考え方が適用可能であり,統計で扱うことができます.
No.7
- 回答日時:
No6 さんがいわれるように、サイコロの例がまずいのです。
帰無仮説が棄却できないとき、帰無仮説を正しいとする基準は検出力のはず、間違った仮説を正しいとしたときの確率(ないしはそれを1から引いたものが)検出力(これを導く式の根拠は私には分かりません)です。
もともと、検定は どちらの選択をしても、すべての場合に、間違う確率が最小にになるように目指したものです。
だから、サイコロの例は別として、検出力がわかれば、そして、それがちゃんとしていれば、データに差ががないと断定できます。
あと、回帰を行い、ある範囲内にいる信頼区間が95%とかいうとらえかたもできるのではないでしょうか?
ただ、分散分析は、一般線形モデルの特殊形です。制限最小二乗法というのが 稲垣氏の「数理統計学」にあります、ある線形な関係を帰無仮説として、その否定命題が対立仮説ですが、対立仮説を棄却するための統計量Fについては、同本のp.226に書いてあります。
ただ、Rとかではどうやるんだろう
No.6
- 回答日時:
色々述べられていますが,
解決策が無いわけではありません.
企業では,製品のコストダウン後の強度などについて
以前と差が無いと言うことを納入先に示す必要があります.
そんな場合に似ていますね.
「同等性の検定」で調べてみてください.
参考書としては,永田先生のサンプルサイズの本とか,
あまり見かけない手法ですが,
手法が無いわけではありません.
ただ,これは,サイコロの出目ですよね.
皆さんが言われるように難しいかもしれませんね.
No.3
- 回答日時:
明らかに違っている点は、
帰無仮説が棄却されなかったからといって、帰無仮説が正しいとは言えない、(検出力とか第一種、第二種の誤り)
これは、交互作用も同じ、主効果がなくても交互作用はあるかもしれない。
私がはっきりとわからない点は、サイコロの目は、正規分布にしたがっていない、その際に、一般線形モデルの回帰分析を使うような、分散分析の確率分布の前提をみたすのか? つまり、サイコロの確率分布自体は正規分布でないのにに分散分析は適用可能か? (各目ガ出る確率の誤差だけを見ているので、その分布は正規分布なので、多分大丈夫だとは思いますが)
No.1
- 回答日時:
>サイコロAとサイコロBに差がない
何を比較したいのでしょうか? 出る目の平均のみ? であれば分散分析可能です。
>私の予想では3要因
3つ要因とは何と何と何の事ですか? 私には1要因(サイコロの種類)に見えますが? 朝昼夜の違いを別の要因として2要因としてもかまいませんが、元々の検定の目的がサイコロの違いのみに言及してますので、1要因で朝昼夜は意味なしと見ているようにも思えます。
この回答への補足
回答ありがとうございます.
>何を比較したいのでしょうか? 出る目の平均のみ? であれば分散分析可能です。
2種類のサイコロを朝昼夜にそれぞれ600回ずつ振って,出た目(1~6)の回数をそれぞれ記録し,その結果を比較して,「朝昼夜,どちらのサイコロを使っても,観測される出目は統計的にみて差がみられなそうだ」ということを述べたい状況です.
>3つ要因とは何と何と何の事ですか? 私には1要因(サイコロの種類)に見えますが?
「サイコロの種類」,「朝・昼・夜」,「サイコロの出目」で3要因と思い,そのように記述していますが,誤っているでしょうか・・・?
確かに,朝昼夜というのは何か捉えていない条件設定でしたね.
サイコロを振る高さとかに設定すれば少しはマシでしたかね.
よろしくお願いします.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 t検定について教えてください 2 2023/02/23 16:35
- 統計学 加重最小二乗法=①「変数を自然対数変換」=②「誤差項の分散の逆数を重み付け」? 8 2022/11/26 11:15
- 統計学 どの統計を使えばいいのか教えてください(EZ-Rを使用) 5 2022/10/11 13:28
- 統計学 現在、サイコロが歪んでいるかを調べています。 有意水準は5%(0.05)でサイコロの目は6なので自由 2 2022/07/21 02:12
- 統計学 Rを用いた「繰り返しがある直交表実験計画法」の分析方法 8 2023/08/01 17:58
- 数学 一つのサイコロを6回振るとき、出る目の種類の個数の期待値はどのようになりますか?また、統計的推測によ 11 2022/06/12 10:39
- 統計学 不偏分散を計算するときに標準偏差和をn-1で割りますが、なぜ-1なのでしょうか? 「なぜnでなくn- 5 2022/07/04 14:54
- 数学 正五角形の頂点を反時計回りにabcdeとする。二つの動点r、wが、rは頂点aを、w頂点cを出発して次 3 2022/07/22 11:40
- 数学 至急!研究の統計について 6 2023/07/12 00:38
- 統計学 確率の確率。 11 2023/06/01 17:56
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
秘密基地、どこに作った?
小さい頃、1度は誰もが作ったであろう秘密基地。 大人の今だからこそ言える、あなたの秘密基地の場所を教えてください!
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
タイムマシーンがあったら、過去と未来どちらに行く?
20XX年、ついにタイムマシーンが開発されました。 あなたは過去に行く? それとも未来? タイムマシーンにのって、どこに行って、何をしたいか教えてください!
-
有意差が無いことを証明(危険率の設定)
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
大中小のサイコロの積が6の倍数...
-
一つのサイコロを6回振るとき、...
-
サイコロの目の期待値は3.5であ...
-
サイコロを10回投げるとき、6の...
-
大中小3個のサイコロの目の積が...
-
±4σに入る確率について教えてく...
-
4人がじゃんけんしてあいこにな...
-
なぜ正規分布の標準偏差は約6...
-
標準偏差の1.5SD
-
白玉1個、赤玉2個が入っている...
-
エクセルのNORMSINV関数の意味...
-
赤玉5個と白玉7個入った袋から...
-
どう確率を出したらいいか教え...
-
相関係数についてくるP値とは何...
-
発生確率0と見なせるのは?
-
ギャンブルルーレットの確率
-
±4σについて
-
数学Aについてです! 袋の中に...
-
4桁の暗証番号について。 わか...
-
確率が重複する場合の計算方法
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
大中小のサイコロの積が6の倍数...
-
一つのサイコロを6回振るとき、...
-
サイコロの目の期待値は3.5であ...
-
サイコロを10回投げるとき、6の...
-
大中小3個のサイコロの目の積が...
-
データ間に差がないことを統計...
-
n個のサイコロを同時に投げた時...
-
3個のサイコロを同時に投げる...
-
高校数学の確率の問題
-
積が100になるのは、(4,5,5),(5...
-
確率の問題です。 1、大小2つの...
-
数学A 大中小の3個のサイコロを...
-
正五角形の頂点を反時計回りにa...
-
長方体を投げた時の確立
-
数学の、確率の問題です。
-
確率過程とは
-
確率・サイコロ
-
OpenGLのプログラムについて
-
確率の問題です。教えてくださ...
-
教えて下さい(°_°) 問題 1〜6の...
おすすめ情報