ベクトルAとBがあり、その両方に垂直なベクトルを求めたいのですが、
どうすれば良いのでしょうか?
内積を計算した結果で0になるものが直行しているというのはわかるのですが・・・

このQ&Aに関連する最新のQ&A

計算 内積」に関するQ&A: ベクトル 内積計算

A 回答 (4件)

rei00 です。

先程の回答違ってますね。alfeim さんがお書きの様に A, B の外積が求めるものですね。

で,あえて内積で頑張るなら次の様になると思います。A, B を三次元ベクトル A (a1, a2, a3), B (b1, b2, b3) とし,求めるベクトルを X (x, y, z) とすると。

垂直=内積0より
 a1・x + a2・y + a3・z = 0
 b1・x + b2・y + b3・z = 0

これを解いて
 x = z・(b3・a2 - a3・b2)/(a1・b2 - b1・a2)
 y = z・(b3・a1 - a3・b1)/(a2・b1 - b2・a1)

今,求めるベクトルの大きさが決まっていませんので,x, y, z の比を使って,求めるベクトルは (a2・b3 - b2・a3, a3・b1 - b3・a1, a1・b2 - b1・a2) となります。

つまり A, B の外積になります。なお,3次元上の次元でも同様に出来ると思います(たぶん・・・)。
    • good
    • 4
この回答へのお礼

丁寧な説明、ありがとうございます。
なぜ外積を使うと垂直なベクトルが求まるのか理解できました。

お礼日時:2001/05/21 10:08

高等学校の数学や入試問題を解く時に「2つのベクトルのいずれにも垂直なベクトル」を求めるのは、しばしば使う計算です。


原理的には「内積=0」の方程式を二つ立てて解けばよいのですが、まとも計算すると時間ばかりかかります。以下の方法でやれば10秒程度で機械的に出せます。(私も受験生の時に随分お世話になった方法です)

問:
ベクトル1 (x1, y1, z1)
ベクトル2 (x2, y2, z2)
に垂直なベクトルの一つ(x3, y3, z3)を求む

方法:
与えられたベクトルの成分を
x1 y1 z1 x1
x2 y2 z2 x2
の順で機械的に並べる。(順に並べて、先頭のx1, x2を尻尾にもう一度並べる)
ちょうど行列式のように、x1 y2-x2 y1を作る。対称性からこれが求めるベクトルのz成分(z3)となる。
次に右に一つずれて、y1 z2-y2 z1を作る。これがx成分(x3)になる。
最後にz1 x2-z2 x1を作る。これがy成分(y3)になる。

本質的にはrei00さんの回答と同じなのですが、ツールと割り切ってしまってとにかく速く求められるのがミソです。
    • good
    • 1
この回答へのお礼

丁寧な説明ありがとうございました。
おかげでなんとかなりそうです。

お礼日時:2001/05/21 10:11

ベクトルAとベクトルBの外積が両ベクトルに対して垂直なベクトルだったと思います


3D系で法線求めるのに使ったと思いました

"法線 外積" あたりをキーワードにすれば原理も含めて説明してるサイトが見つかると思います
    • good
    • 2
この回答へのお礼

わかりました。サーチエンジンで検索してみます

お礼日時:2001/05/21 10:05

お書きの様に「内積を計算した結果で0になるもの」を求めれば良いわけですが,何がお分かりにならないのでしょうか?



内積の計算でしょうか。これでしたら,ベクトル X (x1, x2), Y (y1, y2) の内積は「x1・y1 + x2・y2」ですが。

この式をベクトル A, B に対して用いて得られる連立方程式を解けば求まると思います。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q五角形の最大面積

すべての辺が長さ1の凸五角形で、ある2本の対角線が垂直になるとき、
この五角形の最大面積はいくらか。

面積が最大になるときの五角形は、正方形に正三角形をつけた形になると
おもうので、(√3+4)/4になりましたが、正しいでしょうか。

Aベストアンサー

ご質問の通り、(√3+4)/4で正しいです。

二本の対角線を形作る四点を五角形から選ぶことになりますが
その四点を結ぶと、対角線が垂直で交わることから一辺の長さが
1のひし形になります。となるとこの五角形はひし形に正三角形を
つけた形になります。(すべての辺の長さが1なので)

ひし形の面積が最大になるのはひし形が正方形の場合なので
この五角形の最大面積は
正方形の面積=1
正三角形の面積=√3/4
の和です。

Q0ベクトルでないベクトルaベクトル=(a1,a2)に垂直な単位ベクトルeベクトルを求めよ。 という問

0ベクトルでないベクトルaベクトル=(a1,a2)に垂直な単位ベクトルeベクトルを求めよ。
という問題についてで、赤い線を引いてるところが分からないのでだれか教えてください!

Aベストアンサー

単位ベクトルを
 →e = (x, y)
としたら、「単位」ベクトルなので、「長さ」が1です。
よって
 |→e|² = x² + y² = 1

任意のゼロベクトルでない
 →a = (a1, a2)
においては
 |→a|² = (a1)² + (a2)² ≠ 0
なのだから、
 a2 = 0 の場合には a1 ≠ 0
が成り立つ。あたり前でしょう?

[1][2]は、単に
[1]→a2 = 0 の場合
[2]→a2 ≠ 0 の場合
に分けているだけなので、「a2 ≠ 0 のとき」が分からないといわれても困りますね。
 
 x² = (a2)² / [ (a1)² + (a2)² ]
なのだから、これは
 x = ±(a2) / √[ (a1)² + (a2)² ]
でしょう?

 欄外にメモしてあるような、分母が
  A² = B² + C²

  A = ±( B + C )
になるなんて、あり得ないでしょう。

Q五角形の相似

正五角形の五本の対角線が作る内部の五角形はもとの五角形と相似であることは
証明なしで解答に用いてもよろしいのでしょうか?

Aベストアンサー

正五角形と正五角形が相似であることは、
自明ですが、
内側の五角形が正五角形であることには、
理由が必要です。
「対称性より」程度の説明で
構わないと思いますが。

Aベストアンサー

絶対値があるので、x<a1 と a1≦x<a2 と a2≦x の3通りの場合分け
が必要です。0<b1<b2ですから、与式の両辺に b1b2 をかけておいて
 b2|(x-a1)|>b1|(x-a2)| と変形してからやるといいです。
考えとしては絶対値の外し方[x<0のときlxl=-x,0≦xのときlxl=x]を使い
ます。
1.x<a1 のとき・・・x-a1もx-a2も負になるからマイナスをつけてはずす
   -b2(x-a1)>-b1(x-a2) →両辺に-1をかけてb2(x-a1)<b1(x-a2)
   これを解いて、 x<(a1b2-a2b1)/(b2-b1) ・・・(1)
   ここで a1 と (a1b2-a2b1)/(b2-b1) の大小関係を調べると
   両方に(b2-b1)をかけた式で a1(b2-b1)-(a1b2-a2b1)=-a1b1+a2b1
   =b1(-a1+a2)>0 となるので a1>(a1b2-a2b1)/(b2-b1) となります
   したがって、ここでの解は(1)の解でよいことになります。
2.a1≦x<a2 のとき・・・x-a1は正、x-a2は負だから
   b2(x-a1)>-b1(x-a2)
   これを解いて、x>(a1b2+a2b1)/(b1+b2)
   ここで、1.のときと同様にして (a1b2+a2b1)/(b1+b2) とa1,a2
   との大小関係を考えると、省略しますが、
     a1<(a1b2+a2b1)/(b1+b2)<a2 となり、
   ここでの解は (a1b2+a2b1)/(b1+b2)<x<a2・・・(2)
3.a2≦x のとき・・・x-a1もx-a2も正だから
   b2(x-a1)>b1(x-a2)
   これを解いて x>(a1b2-a2b1)/(b2-b1)
   同様に a2 と (a1b2-a2b1)/(b2-b1) の大小関係を調べると、また
   省略しますが a2>(a1b2-a2b1)/(b2-b1) となり
   ここでの解は a2≦x・・・(3)

以上、(1)~(3)が解となります。
各場合について、数直線をかいて考えるといいでしょう。

絶対値があるので、x<a1 と a1≦x<a2 と a2≦x の3通りの場合分け
が必要です。0<b1<b2ですから、与式の両辺に b1b2 をかけておいて
 b2|(x-a1)|>b1|(x-a2)| と変形してからやるといいです。
考えとしては絶対値の外し方[x<0のときlxl=-x,0≦xのときlxl=x]を使い
ます。
1.x<a1 のとき・・・x-a1もx-a2も負になるからマイナスをつけてはずす
   -b2(x-a1)>-b1(x-a2) →両辺に-1をかけてb2(x-a1)<b1(x-a2)
   これを解いて、 x<(a1b2-a2b1)/(b2-b1) ・・・(1)
   ここで a1 と (...
続きを読む

Q星(太陽以外の恒星)はどうして五角形(星型)なのか?

子供の絵や漫画、アニメ等で星を描くと五角形ですよね
恒星(普通の星)だけでなく流星まで星型ですよね
実際は円形なのに(流星は棒状)
なぜ星は五角形の星型なのですか?
天文学にルーツがあるのですか?
(大昔の天文学者が五角形に感じたとか)

Aベストアンサー

太陽と月は勿論のこと、惑星の金星や火星、木星も土星も、肉眼で大きさを感じることができます。
それに対して、遠くにある恒星は、太陽より大きな星もありますが、遠過ぎて人間の肉眼では大きさを感じられず「点」になります。その光は、地球の大気の影響を受けて、星が瞬いて見えたりします。
ですので、No.1の方のおっしゃる通り、明るく光る恒星は、星の光が中心から放射状に広がって感じられ、それを星印に例えたのだと思います。
五角形になったのは、一筆書きで書けるというのも理由の一つではないでしょうか?

Q平面のベクトル内積=0で垂直になる理由?

平面と平面の位置関係が垂直になる時、内積がゼロになることに関しまして、

なぜなのかを、可能ならば 直感的に理解したいです。

ベクトルの基本は勉強しましたが・・・ 

突然、「垂直ならば この計算の答えがゼロになる」 と教わっただけで、まだ腑に落ちないでいます。

もしも良い説明がありましたら、よろしくお願いいたします。

Aベストアンサー

>なぜなのかを、可能ならば 直感的に理解したいです。

visualにいうこととして、幾何学的に考えてはどうですか。

ベクトルA↑とベクトルB↑の内積IPは

IP=A↑・B↑=|A↑||B↑|cosθ

であって|A↑|、|B↑|はベクトルの大きさ、θはA↑、B↑のなす角度です。

IP=A↑・B↑=0



θ=90°

を意味することが解ります。

いいかえるとIP=A↑・B↑はA↑がB↑に落とす影(射影)であって、垂直なら影が0ということです。

0でない場合はA↑とB↑は平行成分を有して、相互に影を落とすということです。

Qサッカーボール問題、五角形と六角形の数

サッカーボールは次の条件で作られる。
(1)正五角形と正六角形の多面体を球状にしたものである。
(2)各々の五角形の周りは六角形に囲まれており、六角形の周りは五角形と六角形に交互に囲まれている。
(3)オイラーの多面体の定理によれば、面、頂点、辺の数の関係に「面の数 + 頂点の数 = 辺の数 + 2」の関係がある。

これから、五角形と六角形の数を求めるにはどうすればよいのでしょうか。

Aベストアンサー

五角形の数をm、六角形の数をnとするとばらばらにした時の

辺の数  5m+6n
面の数  m+n
頂点の数 5m+6n

このうち、辺は2つが合わさって立体ができており、
頂点は3つが合わさってます。
(90度以上の角度の図形は4つ以上はあわせることができません。また、2個以下なら
頂点になりません)
これを多面体の定理に入れればmが求まります。
また、五角形が六角形に囲まれているならそのすべての辺は六角形と共有です。
そしてそれは六角形の全ての辺の半分に当たります。((2)の記述から)

Qaベクトル・bベクトル×aベクトル・bベクトル=|aベクトル・bベクト

aベクトル・bベクトル×aベクトル・bベクトル=|aベクトル・bベクトル|^2じゃあないんですか?

例えば aベクトル・aベクトル=|aベクトル|^2じゃないですか?

なので、aベクトル・bベクトル×aベクトル・bベクトル=|aベクトル・bベクトル|^2もしくは
|aベクトル|^2|bベクトル|^2かな?と思ったのですが、解答では

(aベクトル・bベクトル)^2になっていました。絶対値はつかなくていいんですか?

Aベストアンサー

←No.2 補足
ベクトルaとベクトルa(同じもの)が
平行でない場合がありえると
考えているのだとしたら、複素ベクトルどころか、
内積も未だ早過ぎます。
「ベクトル」とは何か、の所まで戻って、
最初の最初から、復習が必要でしょう。

ベクトルa・ベクトルa が |ベクトルa|の2乗
になる理由は、
cos(ベクトルaとベクトルaの成す角) = cos(0)
だからですよ。

Q「五角形のもの」何がある?・・・ありそうなのに意外と見つからないので、教えて下さい!

三角形も四角形も、いやというほど身近に満ち溢れているのに、五角形となると意外に見つかりません。

「野球のホームベース」は、すぐに思いついたんですが・・・

皆さん、五角形のものをご存知でしたら、教えて下さい!

Aベストアンサー

こんにちは

先に回答がありますが、花とかヒトデとか、生き物には結構ありますね

その他だと…
「使いかけの消しゴム」って五角形になりがちですよね
「イラストに描かれる家」の形も五角形ではないでしょうか?
「昔、医者でくれてた粉薬の包み」今では見かけませんねぇ、昔は五角形に折った紙に包んでありました。
「から揚げクン用の紙パック」コンビニ(ローソンだっけ?)のメニューです
「牛乳パック」ある角度から見れば五角形です

ぱっと思いつくのはこの程度です

Qベクトル解析の線積分について。 ベクトル関数F(0,xyz,0)について頂点が(1,0,0),(0,

ベクトル解析の線積分について。
ベクトル関数F(0,xyz,0)について頂点が(1,0,0),(0,1,0),(0,0,1)である3角形の境界における線積分の値を求めよ。という問題を教えて頂きたいです。
できたらそのまま線積分する方法とストークスの定理を用いる方法を教えて頂けたら嬉しいです。

Aベストアンサー

これは答えだけなら簡単ですね。"0"です。
三角形の辺上でFは常に0→なので積分しても"0"になります。(x,y,zのいずれかが辺上で"0"です)

そのまま線積分する場合は3辺それぞれを次のようにパラメータ表示すればできます。
(1-t,t,0)
(0,1-t,t)
(t,0,1-t)
tの変域は自分で考えましょう。

ストークスの定理を使う場合は平面上の点を2変数で表す必要があります。
x,y座標が決まれば自動的にz座標は決まりますのでx,yをそのまま使えばよいでしょう。
次にこの面の法線ベクトルを求めます。対称性から(1,1,1)の定数倍であることは簡単にわかります。あとは大きさと符号だけの問題です。
rotF→の計算は地道に微分して計算するだけです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報