ウォーターサーバーとコーヒーマシンが一体化した画期的マシン >>

複素数平面の問題で複素数をベクトルで表していいんですか?
また、複素数平面の図に→OAなどと書いていいのですか?
例えば点Aを表す複素数αがあったとき、αと書かずに→OAと書いていいんですか?
また、点Aを原点中心に60度回転させるとき、α・(cos60°+isin60°)と書かず
に、→OA・(cos60°+isin60°)と書いていいのですか?
先生によって言うことがまちまちなので混乱しています。よろしくお願いします。

A 回答 (6件)

酸素系漂白剤と塩素系漂白剤は,それぞれ単独では役に立ちますが,


「混ぜるなキケン!!」
混ぜると毒ガスが発生して危ないのでした.

ところで,ご質問の補足
>「単独で書く場合」とはどのような場合でしょうか?
の回答ですが,許される例を挙げると,
「2点A(α),B(β)に対し,ベクトル→ABを表す複素数はβ-α(別表現:ベクトル→ABに対応する複素数はβ-α)であり,
点Aを中心に点Bを+60°回転した点をC(γ)とすると,
→ABを(点Aを中心に)+60°回転したものが→ACだから
γ-α=(β-α)(cos60°+isin60°)
より γ=・・・」
などと分離して使う場合です.(対応させて使うが混ぜない.特に "→AB=β-α(誤)" などとは決して書かないこと.)
しかし,きちんと識別して使う限り,複素数をベクトル的な見方で使っていることはしばしばあって,考えやすくて有用です.
    • good
    • 0
この回答へのお礼

どうもありがとうございます!!
なるほど、単独で使うということがよくわかりました。「対応させて使うが混ぜない.」←これわかりやすいですね。おかげさまで今まで胸に支えていた物がとれたような気がします。あくまでも、きっちりと峻別して使うのですね!

お礼日時:2002/11/28 02:35

はじめはしっかり分けた方がいいでしょうね。



そのうち両方の似たところと違うところが見えてきます。
そのときに2つは区別するんだよ、と言えるかどうかです。
A(a,b)と書くようにA(a+bi)とかA(α)
のように書いてもいいと思います。
そのとき例えば長さ(絶対値)などはAB=|β-α|
でいいわけだし、自分でどこまでわかっていて使うかだと
思います。

ここでは表現の問題の様ですが、問題を解くときなどは
ベクトル、座標、複素数を変換して(対応させて)考えることもあります。
    • good
    • 1
この回答へのお礼

どうもお返事ありがとうございます。複素数がよくわからなくて苦手意識があったのですが、今回回答をたくさんもらえて視界が開けたような気がします。原理をきっちりつかんだのであとは演習をしていって慣れようと思います。

>ベクトル、座標、複素数を変換して(対応させて)考えることもあります。

こういう問題が苦手でした(^^).でも両者を対応させるやりかたや解答の書き方がわかったので、よかったです。ありがとうございました!

お礼日時:2002/11/28 02:50

>β-αを→ABと書いて良いのですか?


>複素数平面のグラフの図に矢印をつけて横に→OAなどと書いていいのですか?

ダメです!

Mell-Lilyさんが書かれているように、「ベクトルはベクトル、複素数は複素数」なんです。
複素平面上で複素数を表すと「ベクトルのように」見えるだけであって、それはあくまで複素数です。

どちらも実数の2つ組で表現することができるので、混同してしまうのだと思いますが、
ようするに考えている世界が違うんですよ。

ベクトルの世界の言葉(書き方)と複素数の世界の言葉をいっしょにして使うことは適当ではありません。
    • good
    • 1
この回答へのお礼

お返事どうもありがとうございます!!

>Mell-Lilyさんが書かれているように、「ベクトルはベクトル、複素数は複素数」なんです。複素平面上で複素数を表すと「ベクトルのように」見えるだけであって、それはあくまで複素数です。

なるほど、わかりやすい説明ですね!!

>どちらも実数の2つ組で表現することができるので、混同してしまうのだと思いますが、 ようするに考えている世界が違うんですよ。

考えている世界が違う・・・なるほど、ありがとうございました。

お礼日時:2002/11/28 02:14

ベクトルはベクトル、複素数は複素数と、分けて考えた方がいいのではないでしょうか?


 →OA・(cos60°+isin60°)
これは、書かない方がいいでしょうね。
 α・(cos60°+isin60°)
と書きましょう。
    • good
    • 0
この回答へのお礼

お返事どうもありがとうございます!分けて考えるのですね。参考になりました。

ところで、もしお答えいただけるなら、NO.1のお礼の所に書いた他の質問にも目を通していただけると幸いです。すみません、よろしくお願いします。

お礼日時:2002/11/27 10:50

>点Aを表す複素数αがあったとき、αと書かずに→OAと書いていいんですか?


単独で書く場合は問題ありません.
しかし, 複素数の積とベクトルの内積は全く違うものであることからも分かるように, 混ぜた式は使わないことです.

なお, 本によっては, →αβ のような表記をしているものもありますが, 勿論, 積αβではありません. β-αのことです.
大学レベル以上なら理解されるでしょうが, 危険なのでやめておくことを勧めます.
    • good
    • 0
この回答へのお礼

あぁすみません、2つ目の質問に答えてくださってたのですね・・・。どうもありがとうございます。
ところで、「単独で書く場合」とはどのような場合でしょうか?すみません、よくわかりません。→αβのような形は絶対にやめておこうと思います。

お礼日時:2002/11/27 10:48

>→OA・(cos60°+isin60°)


混ぜるとダメです.

A(α),B(β)に対して →ABを回転するときも
(β-α)(cos60°+isin60°)
でないとイケマセン.
    • good
    • 1
この回答へのお礼

お返事どうもありがとうございます!
なるほど、混ぜるな危険ですね!

それと、他にもお聞きしたいことがあるのですが、点Aを表す複素数αと点Bを表す複素数βがあったとき、β-αを→ABと書いて良いのですか? また、複素数平面のグラフの図に矢印をつけて横に→OAなどと書いていいのですか?すみません、よろしくお願いします。

お礼日時:2002/11/27 10:45

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q複素数平面と座標平面の対応について

本などを見ると、P=a+biとP(a,b)は一対一対応をしていると書かれてあるのですが、これについてどのように整理をつければよいのか迷っています。まず、複素数平面上を書くときは軸に「実軸、虚軸」とはっきり書かないといけないのでしょうか。それと、複素数平面上の点Pの横に(a,b)と書いてはだめですよね。絶対にP=a+biの形で添えないとだめですよね。つまりどこまで対応しているのか分からないんです。あくまで複素数平面と座標平面は別個のものだから、答案を書くときにはそれを別々に書かないとだめですよね。

それと、ベクトルとつなげるときには、複素数平面ではなくて座標平面で考えるんだと思うのですが、そうすると、回転のとき以外はすべて座標平面で考えた方がよいのでしょうか。複素数平面の使い方が余りよくわかりません。
よろしくお願いします。

Aベストアンサー

 
  普通の座標平面だと、(a,b) と書くと、普通、aがx軸、bがy軸です。複素平面でも (a,b) と書くと、bの方が複素数だと思いますが、Y軸に「虚数軸」,X軸に「実数軸」と(または、Yが虚数軸、Xが実数軸などと)でも書いておけば、複素数はこの平面で (a,b) で表現できます。わざわざ、(a,bi)とか、(a+bi) と書く必要はありません(書いても構いません。ただ、複素数平面だと断り、どちらが虚数軸か実数軸かを明示すれば、(a,b) は無論、複素数を表現していることは明らかだからです。……ただ、混同が起こるようなら、P(a,bi) と書いた方がいいですし、分かり易くということなら、書いた方がよいでしょう。結局、見る人にとって、どこまで自明か、分かるかのは話だと思います。学校などでは、P(a+bi) と必ず書くのかも知れません。……他の人の回答で、虚数軸とか書かないでも、(a,bi) と書けばよいとありましたが、それもそうで、これは、見る人が分かればそれでよいということの例です。また、上にも書いていますが、分かり易いです)。
 
  複素数平面なのですから、そこでの (a,b) のaは実数、bは虚数というのは前提としてあるからです。(正確に言えば、実数の平面でも、(a,b) というのは、例えば、iヴェクトルとjヴェクトルなどの基底単位ヴェクトルの略表現なのです。しかしそんなことは考えないでしょう。ヴェクトル積などになってくると、三次元の基底単位ヴェクトルi,j,kを使わないとうまく表現できないので使いますが、それでも、三次元座標の点は、(x,y,z) などで表現します。
 
  「ベクトルとつなげるとき」というのが、何かよく分からないのですが、複素平面での原点から延びるヴェクトルというのは、一つの複素数を示しているのです。そのヴェクトルの長さは、実は、その複素数の絶対値になります。複素平面での二つの複素数ヴェクトルの合成というのは、実数部分と虚数部分をそれぞれ独立に合計して、新しい複素数を造っていることになります。
 
  複素数平面というのは、複素数を分かり易く表現しているので、座標平面と同じように扱っていいのです。ただ、ヴェクトルの合成とか回転というのは、「意味」が違って来るということです。複素数平面のヴェクトルは、実際は一つの複素数スカラーで、座標平面のヴェクトルは、スカラーではなく、実際にヴェクトルだということです。意味の違いが分かっていれば、同じように使えます。
 

 
  普通の座標平面だと、(a,b) と書くと、普通、aがx軸、bがy軸です。複素平面でも (a,b) と書くと、bの方が複素数だと思いますが、Y軸に「虚数軸」,X軸に「実数軸」と(または、Yが虚数軸、Xが実数軸などと)でも書いておけば、複素数はこの平面で (a,b) で表現できます。わざわざ、(a,bi)とか、(a+bi) と書く必要はありません(書いても構いません。ただ、複素数平面だと断り、どちらが虚数軸か実数軸かを明示すれば、(a,b) は無論、複素数を表現していることは明らかだからです。……ただ、混同が...続きを読む

Q2階微分d^2y/dx^2を詳しく教えてください

微分=傾き=tanθ=dy/dxと言うのは入門書でなんとかわかったのですが
2階微分=傾きの変化率(傾きの傾き)=d^2y/dx^2
のこのd^2y/dx^2がなぜこうなるのかぜんぜんわかりません。
dy/dxがどう変化してd^2y/dx^2となるのか教えてください。
いろいろ本やネットで調べましたが傾き=tanθ=dy/dxまでは入門書でも
詳しく書かれているのですがd^2y/dx^2へはどの解説でもいきなり飛んでいってしまいます。

Aベストアンサー

表記の仕方ですか?
dy/dxは 
yをxで微分するということです
2階微分はdy/dxをさらにxで微分するということです
dy/dxのyのところをdy/dxにおきかえれば
d(dy/dx)/dx=d^2y/dx^2
見た目ではdが2回掛かっているからd^2
dxの部分も2回掛かっているのでdx^2なんですが
dを1つの変数とみたり、dxを1つの変数と見てたりして分かりにくいかもしれません
これはそう決めたからなんです
ある程度覚えるしかないです

Q偏角を表す「arg」の読み方

 どなたか教えて下さい!!

偏角を表す記号「arg」はなんて読めばいいのでしょうか?
 
 至急お願い致します。m(__)m

Aベストアンサー

とりあえずオンライン辞書として使ってみたらどうでしょう?

参考URL:http://www.alc.co.jp/sa_menu.html

Q分子結晶と共有結合の結晶の違いは?

分子結晶と共有結合の結晶の違いはなんでしょうか?
参考書を見たところ、共有結合の結晶は原子で出来ている
と書いてあったのですが、二酸化ケイ素も共有結合の
結晶ではないのですか?

Aベストアンサー

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素SiO2の場合も
Si原子とO原子が共有結合し、この結合が立体的に繰り返されて
共有結合の物質というものをつくっているのです。
参考書の表現が少しまずかったのですね。
tomasinoさんの言うとおり、二酸化ケイ素も共有結合の結晶の1つです。

下に共有結合の結晶として有名なものを挙げておきます。

●ダイヤモンドC
C原子の4個の価電子が次々に4個の他のC原子と共有結合して
正四面体状に次々と結合した立体構造を持つのです。
●黒鉛C
C原子の4個の価電子のうち3個が次々に他のC原子と共有結合して
正六角形の網目状平面構造をつくり、それが重なり合っています。
共有結合に使われていない残りの価電子は結晶内を動くことが可能なため、
黒鉛は電気伝導性があります。
(多分この2つは教科書にも載っているでしょう。)
●ケイ素Si
●炭化ケイ素SiC
●二酸化ケイ素SiO2

私の先生曰く、これだけ覚えていればいいそうです。
共有結合の結晶は特徴と例を覚えておけば大丈夫ですよ。
頑張って下さいね♪

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素Si...続きを読む

Q二量体ってなんですか?

二量体について教えてください。

Aベストアンサー

 二量体は分子が2つ結合したものを言います。結合は共有結合の場合もありますし,水素結合などによる会合の場合もあります。また,分子は同じ分子の場合も類似の別分子である場合もあります。

 つまり簡単に言うと,アミノ酸,核酸,・・・の様に,同じグループにまとめられる分子2つからなるものは全て二量体です。

 お書きの酢酸の場合は,酢酸分子2つを A, B とすると,分子 A の OH と分子 B の CO が水素結合し,分子 A の CO と分子 B の OH が水素結合した状態で存在します。つまり,2分子が水素結合で結合していますから,二量体と言うわけです。なお,これは酢酸に限らず,カルボン酸一般に言えることです。
 

Qベクトルの内積を複素数で表したい

はじめまして。
複素平面上の点
0,
z(1)=r(1)*e^iθ(1)=r(1){cosθ(1)+isinθ(1)},
z(2)=r(2)*e^iθ(2)=r(2){cosθ(2)+isinθ(2)}
を考えます。

原点0からz(1)への2次元実ベクトル、
( r(1)cosθ(1), r(1)sinθ(1) )
と、原点0からz(2)への2次元実ベクトル、
( r(2)cosθ(2), r(2)sinθ(2) )
を考えます。

このとき、二つの2次元実ベクトルの内積
( r(1)cosθ(1), r(1)sinθ(1) )・( r(2)cosθ(2), r(2)sinθ(2) )
を複素数z(1)、z(2)を用いて表したいのですが、どういった形になるのでしょうか?

また、二つの複素数z(1)、z(2)の積
z(1)*z(2)
をベクトルOz(1)、Oz(2)を用いて表したいのですが、どういった形になるのでしょうか?

Aベストアンサー

3番の者です。1番の方がすでに答えていることを重ねて答えてしまったようですみません。

平面幾何で使われる複素数と平面ベクトルについて、ベクトルの内積と同じものが複素数の構造だけから自然に定義できることはすでに下に出ている通りですが、平面ベクトルの性質だけからは複素数の積に相当するものは出ませんね。

>単位ベクトル(1,0)が必要になる

とお気づきのように、ベクトルのなかで複素数の単位元1に相当するものはあらかじめ決めてやらないとうまくいかないからです。

Q複素数の計算と偏角がわかりません。

見ていただきありがとうございます。

この質問がわかりません。

-1/√3+iの絶対値の2乗は○/○、偏角は○/○π(ただし、偏角は0以上、2π未満とする。)

/は分数の線とし、√の後の数字は√の中に入ってるとし、iは虚数とする。

この問題がわかりません。
答えは持ってます。

もしとき方がわかる方がいましたら、回答よろしくお願いします。

Aベストアンサー

1) 複素数 z=x+iy の絶対値は次の式で求められます。
  |z|=√(x^2+y^2)

  |-1/√3+i|^2
 =1/3+1
 =4/3

(∴ |z|=2/√3 )

2) 偏角θ (0≦θ<2π)は次式で求めます。
  tanθ=y/x
  ただし、この式では 周期π で解が出てきますので、複素数zを極座標表示して 元の複素数になっているか確認します。
  (複素平面上の第2象限にある解を求めるという方法でもOKです。)

  tanθ=1/(-1/√3)=-√3
 ∴θ=2π/3, 5π/3

 θ=2π/3 のとき
   z=2/√3 { cos(2π/3) + i sin(2π/3) }
    =-1/√3 + i
  となり、元の複素数に一致する。

 θ=5π/3 のとき
   z=2/√3 { cos(5π/3) + i sin(5π/3) }
    =+1/√3 - i
  となり、元の複素数の符号が判定していて不一致。

 以上のことから、偏角 θ=2π/3 と求められます。

1) 複素数 z=x+iy の絶対値は次の式で求められます。
  |z|=√(x^2+y^2)

  |-1/√3+i|^2
 =1/3+1
 =4/3

(∴ |z|=2/√3 )

2) 偏角θ (0≦θ<2π)は次式で求めます。
  tanθ=y/x
  ただし、この式では 周期π で解が出てきますので、複素数zを極座標表示して 元の複素数になっているか確認します。
  (複素平面上の第2象限にある解を求めるという方法でもOKです。)

  tanθ=1/(-1/√3)=-√3
 ∴θ=2π/3, 5π/3

 θ=2π/3 のとき
   z=2/...続きを読む

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Qdxやdyの本当の意味は?

宜しくお願いします。

昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。

結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。

実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?

どなたかご教示いただけましたら幸いでございます。

Aベストアンサー

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。

さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。

y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)
と表される。

これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。

その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。

微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。

なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、...続きを読む

Q蒸気圧ってなに?

高校化学IIの気体の分野で『蒸気圧』というのが出てきました。教科書を何度も読んだのですが漠然とした書き方でよく理解できませんでした。蒸気圧とはどんな圧力なのですか?具体的に教えてください。

Aベストアンサー

蒸気圧というのは、主として常温付近で一部が気体になるような物質について用いられる言葉です。

液体の物質の場合に、よく沸点という言葉を使います。
物質の蒸気圧が大気圧と同じになったときに沸騰が起こります。
つまり、沸点というのは飽和蒸気圧が大気圧と同じになる温度のことを言います。
しかし、沸点以下でも蒸気圧は0ではありません。たとえば、水が蒸発するのは、常温でも水にはある程度の大きさ(おおよそ、0.02気圧程度)の蒸気圧があるためにゆっくりと気化していくためであると説明できます。
また、油が蒸発しにくいのは油の蒸気圧が非常に低いためであると説明できます。

さきほど、常温での水の飽和蒸気圧が0.02気圧であると述べましたが、これはどういう意味かと言えば、大気圧の内の、2%が水蒸気によるものだということになります。
気体の分圧は気体中の分子の数に比例しますので、空気を構成する分子の内の2%が水の分子であることを意味します。残りの98%のうちの約5分の4が窒素で、約5分の1が酸素ということになります。

ただし、上で述べたのは湿度が100%の場合であり、仮に湿度が60%だとすれば、水の蒸気圧は0.2x0.6=0.012気圧ということになります。

蒸気圧というのは、主として常温付近で一部が気体になるような物質について用いられる言葉です。

液体の物質の場合に、よく沸点という言葉を使います。
物質の蒸気圧が大気圧と同じになったときに沸騰が起こります。
つまり、沸点というのは飽和蒸気圧が大気圧と同じになる温度のことを言います。
しかし、沸点以下でも蒸気圧は0ではありません。たとえば、水が蒸発するのは、常温でも水にはある程度の大きさ(おおよそ、0.02気圧程度)の蒸気圧があるためにゆっくりと気化していくためであると説明できま...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング