空間内の原点Oを中心とする半径1の球面をSとする。同一平面上にないS上の相異なる4点A1、A2、A3、A4がベクトルa1=OA1、a2=OA2、a3=OA3、a4=OA4とおくとき、ベクトルa1+a2+a3+a4=0を満たしているとする。
(1)で内積a1・a2=a3・a4、a2・a3=a1・a4の証明をしました。
(2)で四面体A1A2A3A4の4つの面が合同であることを証明しました。
ここからがわからないのですが、
(3)△A1A2A3の面積をt=a1・a2、u=a1・a3(内積)を用いて表せ。
(4)ベクトルa1=a2=a3=a4=0かつt=uを満たすようにA1,A2,A3,A4を動かすとき、四面体A1A2A3A4の表面積が最大のものは正四面体であることを示せ。
という問題です。読みにくいですがどなたかよろしくお願いします。
No.2ベストアンサー
- 回答日時:
(3) A1A2とA1A3のなす角をθとすると,
△A1A2A3=0.5×A1A2×A1A3×sinθ
で,
A1A2=|a2-a1|=√2√(1-t)…(1)
A1A3=|a3-a1|=√2√(1-u)…(2)
また,ベクトルの内積を考えて(↓の左辺はベクトル,右辺はスカラーです)
A1A2・A1A3=A1A2×A1A3×cosθ
ここで,左辺は
(a2-a1)・(a3-a1)=a2・a3-a1・a2-a1・a3+a1・a1=-2(t+u)
(a1+a2+a3+a4=0からa2・a3=-1-a1・a2-a1・a3)
なので,
cosθ=-(t+u)/√(1-t)(1-u)
ここからsinθを計算して最初の式に代入すれば,
△A1A2A3=√(1-t-u-tu-t^2-u^2)
(4) t=uを上の式に代入して√の中身を平方完成すると△A1A2A3の面積が最大になるのはt=u=-1/3のときとわかります。よって,cosθ=1/2となり,A1A2=A1A3と合わせて△A1A2A3は正三角形になります。他の面も合同なので結局正四面体のときに表面積が最大になります。
No.3
- 回答日時:
(3)今の場合、△ABCの面積は、ベクトルa1からa4までのベクトルの成す平行六面体の体積、|(a2-a1)(a3-a1)(a4-a1)| を、△ABCに直交する (a2-a1)×(a3-a1)の単位ベクトルとベクトル(a4-a1)の単位ベクトルの成す方向余弦で割り、1/2倍すれば求められます。
既にされていたであろうように、ベクトルa4の成分をa1からa3のベクトル成分で表わし、a1・a2、a1・a3をそれぞれ t、uとおきます。
(4)題意が不明です。
No.1
- 回答日時:
(3)三角形の面積公式を使えば解けます。
一般に、△ABC=(1/2)√(|AB|^2|AC|^2-(AB・AC)^2)
これを使えば、
△A1A2A3 = (1/2)√(|A1A2|^2|A1A3|^2-(A1A2・A1A3)^2)
これを上手くt,uの式に変更するだけですね。
計算すると △A1A2A3 = √((1-t)(1-u)-(t+u)^2) となります(多分)
(4)a1=a2=a3=a4=0はありえないので、a1=a2=a3=a4としてかんがえます。
まず、四面体の表面積は(3)の4倍ですね。
t=uですから、表面積は 4√(-3t^2-2t+1) となります。
これの最大のときに△A1A2A3が正三角形になっていることを示せばいいと思います。
参考までに、表面積の最大値は (8/3)√3 (t=-1/3のとき)
△A1A2A3の一辺の長さは (2/3)√6 となります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
ハマっている「お菓子」を教えて!
この世には、おいしいお菓子がありすぎて……。 次何を食べたらいいか迷っています。 みなさんが今、ハマっている「お菓子」を教えてください!
-
家・車以外で、人生で一番奮発した買い物
どんなものにお金をかけるかは人それぞれの価値観ですが、 誰もが一度は清水の舞台から飛び降りる覚悟で、ちょっと贅沢な買い物をしたことがあるはず。
-
ホテルを選ぶとき、これだけは譲れない条件TOP3は?
ホテルを探す時、予約サイトで希望条件の絞り込みができる便利な世の中。 あなたは宿泊先を決めるとき「これだけは譲れない」と思う条件TOP3を教えてください。
-
【大喜利】世界最古のコンビニについて知ってる事を教えてください【投稿~10/10(木)】
【お題】 ・世界最古のコンビニについて知ってる事を教えてください
-
「お昼の放送」の思い出
小学校から中学校、ところによっては高校まで お昼休みに校内放送で、放送委員が音楽とかおしゃべりとか流してましたよね。 最近は自分でもラジオができるようになって、そのクオリティもすごいことになっていると聞きます。
-
高校化学 浸透圧の範囲で質問があります。「浸透圧が同じなら移動する水の量は同じ」ですか? 「京大化学
化学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・【お題】絵本のタイトル
- ・【大喜利】世界最古のコンビニについて知ってる事を教えてください【投稿~10/10(木)】
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・ハマっている「お菓子」を教えて!
- ・最近、いつ泣きましたか?
- ・夏が終わったと感じる瞬間って、どんな時?
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
「ノルム、絶対値、長さ」の違...
-
一次従属の問題
-
一次独立だけど、基底にならな...
-
微積分の記号δ、d、Δ、∂の違い
-
n次元ベクトルの外積の定義
-
複素数の絶対値の性質について
-
線形代数 直交するベクトル
-
平面の交線の方程式
-
2つに直交する単位ベクトル
-
「任意」ってどういう意味?
-
球面と直線の交点
-
行列とベクトルの表記の仕方に...
-
正規直交基底であることの確認
-
座標系の奥(手前)方向の書き方
-
線形代数
-
det(A)≠0 の必要十分条件を教え...
-
点Oから平面ABCへ下ろした垂線...
-
4点が同一平面上にあることを示...
-
2点A(-2,1,-1), B (1,3,2)を通...
-
2次元における外積について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報