ここから質問投稿すると、最大4000ポイント当たる!!!! >>

現在、大学でベクトル解析を学んでいます。
そこで、線積分や面積分といったものがでてきたのですが、計算方法はわかったのですが、何を求めているのかが
今ひとつ分かりません。
 線積分とは、定点から、線分のある点に向かう
ベクトルとそのある点における値を掛けたものを線分上の
全ての点において足し合わせたもの、面積分とはある点における面素とその点における法線を掛けたものを面上の全ての点において足し合わせたもの
 と解釈しているのですが、やはり、どこの値がでてきているのかが今ひとつ分かりません。また、これを求めることによりどんな利点があるのでしょうか?力学や電磁気等を理解するには必須みたいですが・・・。
 よろしければ、回答お願いいたします。

このQ&Aに関連する最新のQ&A

A 回答 (5件)

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。

高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例えば、「太さが一定でなく、とある関数であらわされているような紐の重さを計算する」というのが一つの例になるでしょう。

一方、面積分とは同じように書くならば、「何がしかの曲面を細かく分けて調べ、その量をすべて足し合わせることによって面全体の性質を調べること」になります。

例としては、日本全体の人口密度分布が分かっているときに、日本全体の人口を求めること、や、地価の分布が何らかの関数であらわされているとき、その地方の土地の値段の総量を求めるような計算が面積分です。

*******************************************
以上のようだそうです.
    • good
    • 0
この回答へのお礼

>>積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

私もその一人ですね。

>>例えば、「太さが一定でなく、とある関数であらわされているような紐の重さを計算する」というのが一つの例になるでしょう。
一方、面積分とは同じように書くならば、「何がしかの曲面を細かく分けて調べ、その量をすべて足し合わせることによって面全体の性質を調べること」になります。

例としては、日本全体の人口密度分布が分かっているときに、日本全体の人口を求めること、や、地価の分布が何らかの関数であらわされているとき、その地方の土地の値段の総量を求めるような計算が面積分です。

具体的な例を掲示して頂きありがとうございます。何となくですが応用例が分かった気がします。

お答えして頂いた皆様にポイントを差し上げたいのですが、ルールにより2名までしか差し上げることができないので、今回は先着順にポイントを差し上げたいと思います。皆様のお答えは非常に参考になりました。
ありがとうございます。

お礼日時:2004/09/07 20:29

ベクトル解析を勉強していく上で大事なのは『場』の概念です。



「場」とは空間中の点を指定すれば”値”が決まるような量のことです。
場にはスカラー場とベクトル場があります。

・スカラー場とはその値がスカラーである場のこと 例えば
三次元空間でそれぞれの点における「気温」など

・ベクトル場とは値がベクトルである場のこと
例えば
三次元空間でそれぞれの点における「風」の方向ベクトルなど

です。その場の上で行う積分は

○ベクトル場Fの曲線Cにそった線積分とは

・Fが力ならば、曲線Cに沿ってした仕事の総和
(仕事=力・動かされた距離より)

・Fが水の速度ベクトルならば、曲線Cに沿って流れ出した水の総量。

○ベクトル場Fの、曲面Sに沿った積分とは

・Fが水の速度ベクトルならば、曲面Sを通過した水の体積。

詳しくは岩波の「キーポイントベクトル解析」という本を読むと良く解ると思います。

これからストークスやガウスの定理も出てきてややこしくなってくると思うのでしっかりがんばってください。

参考URL:http://www.iwanami.co.jp/cgi-bin/isearch?isbn=IS …
    • good
    • 1
この回答へのお礼

>>ベクトル解析を勉強していく上で大事なのは『場』の概念です。

はい、電磁気学で痛感しています。

>>○ベクトル場Fの曲線Cにそった線積分とは

・Fが力ならば、曲線Cに沿ってした仕事の総和
(仕事=力・動かされた距離より)

以前、力学で学んだ事がありますが、その時はベクトル解析はおろか、微積分もあまり勉強していなかった為に
さっぱり意味が分かりませんでした。が、ベクトル解析を学べば分かりそうな気がするので頑張って生きたいと思います。

参考URLで紹介して頂いた本も書店で見付けたら一読み
してみたいと思います。ありがとうございました。

お礼日時:2004/09/08 00:48

ひとつの考え方ですが、



線積分:
 ある道を歩いていくとき、風に逆らったり、上り下りしながら歩いていく。そのときどきで踏ん張ったり、楽に歩いたりできます。で、歩き終わったときの、疲れ方の程度を求めるものである、と。

面積分:
 線積分の応用。ある地域をくまなく踏破したときの疲れ方の程度を考えるということ。
    • good
    • 1
この回答へのお礼

ご回答ありがとうございます。
一見、あまり線積分、面積分と関係なさそうですが、発想の転換でこういった捉えかたもできるのですね。
ありがとうございました。

お礼日時:2004/09/08 00:41

こんなページはどうでしょう。


最後の方にベクトル解析についての記事があります。

ただ、面積分のところが若干弱いので補足しておきます。

面積分とは例えば川の中にある曲面を考えてその曲面を貫く単位時間あたりの水の量を求めるのに使ったりします。
どういうことかというと水の流量をあらわすベクトルをVとします。

このVというベクトルを面の微少な部分に垂直な成分と平行な成分に分けます。
このとき面に垂直な成分だけが面を通り抜けて、面に平行な成分は面を通り抜けることはありません。
つまりこのときVと面積要素の内積は微少な面を単位時間に通過する水の量をあらわします。
それを全面にわたって足しあわせたものが面積分となっています。

参考URL:http://www.geocities.co.jp/HeartLand-Poplar/2391 …
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。
面積分のおおよその意味をとらえる事ができたような気がします。また、参考URLを参照させて頂いたのですが、電磁気学を学ぶための読み物として役立ちそうです。ありがとうございました。

お礼日時:2004/09/08 00:38

簡単な例で言えば、平面上の関数と曲線が与えられていてその曲線上の線積分は関数と曲線に挟まれてできる曲面(平面に垂直)の面積を表しています。

また曲面上の関数を曲面上で面積分したものはその関数と曲面で挟まれてできる立体の体積を表しています。このくらいの感じをつかんでおけばいろんな積分の理解の助けになるかもしれませんがどうでしょうか。
    • good
    • 1
この回答へのお礼

お答えありがとうございます。う~ん。何となく分かったような気が。でも、まだまだ理解できていない部分があると思うんで、勉強してみます。

お答えして頂いた皆様にポイントを差し上げたいのですが、ルールにより2名までしか差し上げることができないので、今回は先着順にポイントを差し上げたいと思います。皆様のお答えは非常に参考になりました。
ありがとうございます。

お礼日時:2004/09/07 20:35

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qベクトル場の面積分に関してです

1.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (-2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:面積分と極座標を用いなければならない)

2.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:ガウスの発散定理を用いなければならない)

この2問がどうしても解けないので教えていただけないでしょうか?
特に、1.に関しては「式変形の流れ」、2.に関しては、閉局面として扱って計算した後に底辺を除く必要があるので「底辺の計算方法」だけでも教えていただけると有難いです。

よろしくお願いします!

Aベストアンサー

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑・n↑ dS
= r^3 ∫[0,π/2] dθ ∫[0,2π] dφ (-2sin^2 θ cos 2φ + cos^2 θ)
= 2π r^3 /3
= 18π.

2.
Sに底面を合わせたものをEとし,Eを表面とする体積領域をVとすると,
ガウスの発散定理より

∫[E] f↑・dS↑
= ∫[V] div f↑ dV
= ∫[V] 5 dV
= 18π×5
= 90π.

で,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ - ∫[底面] f↑・dS↑
なのですが,底面での単位法線ベクトルは明らかにz軸に平行であるのに対し,
底面においてz = 0ですから,f↑は底面において f↑ = (2x,2y,0)となり
z軸に対して垂直です.
すなわち,底面においてf↑とn↑とは垂直なのです:
f↑・n↑ = 0.

したがって
∫[底面] f↑・dS↑ = ∫[底面] f↑・n↑ dS = 0
であり,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ = 90π.

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q単位法線ベクトルの問題なんですが。。。

曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.

という問題です.

他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
とするのはわかったのですがgradfがわからないです。。。

Aベストアンサー

未消化のgrad fを使わなくても以下のように出来ます。
いずれにしてもただ丸写しするのではなく教科書や講義ノートや参考書など
を復習して基礎的なことを勉強して、理解するだけの自助努力が大切です。

f(x,y,z)=4(x^2)y+z^3-4=0

全微分して
 8xydx+4(x^2)dy+3(z^2)dz=0

点P(1,-1,2)の座標を代入
 -8dx+4dy+12dz=0
 4(-2,1,3)・(dx,dy,dz)=0
法線ベクトル:±(-2,1,3)
 |(-2,1,3)|=√(4+1+9)=√14
単位法線ベクトルn=±(-2,1,3)/√14

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q面積分の計算

授業でやった面積分の問題でわからないところがあったので、できれば教えてもらいたいです。

1.曲面z=2-x^2-y^2 のx≧0、y≧0、z≧0にある部分をSとする。
面積分 ∬(x^2+y^2)dS を解け。
という問題なのですが、例題を参考にして
r=(x、y、2-x^2-y^2) 、 dS=|∂r/∂x × ∂r/∂y|dxdy
として計算してみたのですが、どうもうまくいきません。
計算が違うのか、他の解き方なのかわかりませんが、どなたか分かる方がいたら教えて下さい。

それと、もう1つ
2.X=(xz、xyz^2、3z)とする。Sを円錐z^2=x^2+y^2と平面z=2に囲まれた領域を全表面とする。この領域の外部をSの正の向きとしたとき、次を計算せよ。
∬ X・n dS (nは外向き単位法線ベクトル)
という問題で、これはよくわかりません。
nをどうやって考えたらいいのかがよくわからないので、そこから先に進めません。どなたか分かる方がいたら、ヒントでもよいので教えてもらえないでしょうか?

長々とすいませんでした。よろしくお願いします。

授業でやった面積分の問題でわからないところがあったので、できれば教えてもらいたいです。

1.曲面z=2-x^2-y^2 のx≧0、y≧0、z≧0にある部分をSとする。
面積分 ∬(x^2+y^2)dS を解け。
という問題なのですが、例題を参考にして
r=(x、y、2-x^2-y^2) 、 dS=|∂r/∂x × ∂r/∂y|dxdy
として計算してみたのですが、どうもうまくいきません。
計算が違うのか、他の解き方なのかわかりませんが、どなたか分かる方がいたら教えて下さい。

それと、もう1つ
2.X=(xz、xyz^2、3z)とする。Sを円錐z^2=...続きを読む

Aベストアンサー

#2です。
A#2の回答でお書きした積分はSで囲まれた部分の体積です。
質問者さんの質問の面積積分ではありませんので下記の面積積分
の解答に差し替えてください。
訂正のお願いとお詫びをさせて頂きます。

1.
∂r/∂x × ∂r/∂y
=(1,0,-2x)×(0,1,-2y)
=|i_j_k; 1_0_-2x; 0_1_-2y|
=(2x,2y,1)
|∂r/∂x × ∂r/∂y|=√{4(x^2)+4(y^2)+1}
I=∬_S*{x^2+y^2}dS
=∬_Ω*(x^2+y^2)√{4(x^2)+4(y^2)+1}dxdy
Ω:2-x^2-y^2≧0,x≧0,y≧0
x=r*cosθ, y=r:sinθで置換
I=∫[θ:0,π/2]∫[r:0,√2]*(r^2)[{4(r^2)+1}^(1/2)]*rdrdθ
=(π/2)∫[r:0,√2]*(r^3)[{4(r^2)+1}^(1/2)]*dr
=(π/2)(1/120)[{6(r^2)-1}{4(r^2)+1}^(3/2)]|[r:0,√2]
=149π/120

これは#3様の計算結果と同じになります(合っていることを確認する
結果になりました)。

#2です。
A#2の回答でお書きした積分はSで囲まれた部分の体積です。
質問者さんの質問の面積積分ではありませんので下記の面積積分
の解答に差し替えてください。
訂正のお願いとお詫びをさせて頂きます。

1.
∂r/∂x × ∂r/∂y
=(1,0,-2x)×(0,1,-2y)
=|i_j_k; 1_0_-2x; 0_1_-2y|
=(2x,2y,1)
|∂r/∂x × ∂r/∂y|=√{4(x^2)+4(y^2)+1}
I=∬_S*{x^2+y^2}dS
=∬_Ω*(x^2+y^2)√{4(x^2)+4(y^2)+1}dxdy
Ω:2-x^2-y^2≧0,x≧0,y≧0
x=r*cosθ, y=r:sinθで置換
I=∫[θ:0,π/2]∫[r:0,√2]*(r^2)[{4(r^2)+1}^(1/2)]*rdrdθ
=(...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q面積分の問題です。

放物面S:z=x^2+y^2、(x^2+y^2<=4)について、
(1)この曲面の表面積
(2)この曲面上でのφ=zの面積分
(3)この曲面上でのベクトル場A=yi-xj+z^2kの面積分
の求め方を教えてください。

Aベストアンサー

(1)
S:{(x,y,z)|z=x^2+y^2≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S1=∬[S] dS
=∬D √{1+(z_x)^2+(z_y)^2} dxdy
=∬D √{1+4x^2+4y^2} dxdy
x=rcosθ, y=rsinθとおくと
z=r^2≦4
0≦r≦2,0≦θ≦2π
D → E:{(r,θ)|0≦r≦2, 0≦θ≦2π}
√{1+4x^2+4y^2} dxdy=√(1+4r^2) rdrdθ
であるから
S1=∬[E} r√(1+4r^2) drdθ
=∫[θ:0→2π] dθ∫[r:0→2] r√(1+4r^2) dr
=2π[(2/3)(1/8)(1+4r^2)^(3/2)][r:0→2]
={17(√17)-1}π/6 ←(答え)

(2)
S:{(x,y,z)|z=x^2+y^2,z≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S2=∬[S] φdS
=∬[D} z√{1+(z_x)^2+(z_y)^2}dxdy
=∬[D] (x^2+y^2)√(1+4x^2+4y^2)dxdy

x=rcosθ, y=rsinθとおけば
(x^2+y^2)√(1+4x^2+4y^2)dxdy
=(r^2)√(1+4r^2) rdrdθ=(r^3)√(1+4r^2)drdθ
D → E:{(r,θ)|0≦r≦2,0≦θ≦2π}
S2=∬[E] (r^3)√(1+4r^2)drdθ
=∫[θ:0→2π] dθ∫[r:0→2](r^3)√(1+4r^2)dr
=2π∫[r:0→2](r^3)√(1+4r^2)dr
=2π[(1/120)(6r^2-1)(1+4r^2)^(3/2)][r:0→2]
=(391(√17)+1)π/60 ←(答え)

(3)
S:{(x,y,z)|z=x^2+y^2,z≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y

S3=∬[S] A↑・n↑dS
=∬[S] (y,-x,z^2)・(-2x,-2y,1)/√(1+4x^2+4y^2) dS
=∬[D] (-2xy+2xy+x^2+y^2)dxdy
=∬[D] (x^2+y^2)dxdy

x=rcosθ, y=rsinθとおくと
D → E:{r,θ)|0≦r≦2,0≦θ≦2π}
S3=∬[E] (r^2) rdrdθ
=∫[θ:0→2π] dθ∫[r:0→2] (r^3)dr
=2π[(1/4)r^4][r:0→2]
=8π ←(答え)

(1)
S:{(x,y,z)|z=x^2+y^2≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S1=∬[S] dS
=∬D √{1+(z_x)^2+(z_y)^2} dxdy
=∬D √{1+4x^2+4y^2} dxdy
x=rcosθ, y=rsinθとおくと
z=r^2≦4
0≦r≦2,0≦θ≦2π
D → E:{(r,θ)|0≦r≦2, 0≦θ≦2π}
√{1+4x^2+4y^2} dxdy=√(1+4r^2) rdrdθ
であるから
S1=∬[E} r√(1+4r^2) drdθ
=∫[θ:0→2π] dθ∫[r:0→2] r√(1+4r^2) dr
=2π[(2/3)(1/8)(1+4r^2)^(3/2)][r:0→2]
={17(√17)-1}π/6 ←(答え)

(2)
S:{(x,y,z)|z=x^2+y^2,z≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S2=∬[S] φdS
=...続きを読む

Qベクトル解析の面積分

ベクトル解析学の面積分でわからないところがあります。
面積分習いたてであまりわからないのですが、
S:円柱面 y^2+z^2=4
0≦x≦1
z≧0
のとき、次の面積分を求めよ。
∫_[S](xi+yj+zk)・dS

この問題なのですが、
z^2=4-y^2≧0
y^2≧4
-2≦y≦2
くらいまで少し考えてみたのですが、すぐに行き詰まってしまいました。
この後はどうすればいいのでしょうか。
今まではこの後に
z=f(x,y)
とかになり、fxやfyを出せたのですぐにできたのですが、zがxで表現できないので…
よろしくお願いします。

Aベストアンサー

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r * cosθ, r * sinθ)・(0, cosθ, sinθ) * |dS|
= (r * (cosθ)^2 + r * (sinθ)^2) * r * dθ * dx
= r^2 * dθ * dx.

これを 0≦θ≦π,0≦x≦1 の範囲で積分すると,円柱側面での面積分は,
I1 = r^2 * π * 1 = πr^2.


■円柱の底面 (x=1)

・外向きの単位法線ベクトル:n=(1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(1, 0, 0) * |dS|
= x * |dS|
= |dS|.

これを円柱の底面にわたって積分すると,底面積そのものなので,
I2 = πr^2 / 2.


■円柱の底面 (x=0)

・外向きの単位法線ベクトル:n=(-1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(-1, 0, 0) * |dS|
= -x * |dS|
= 0.

∴ I3 = 0.


■カマボコの底面 (z=0)

・外向きの単位法線ベクトル:n=(0,0,-1).

∴ (x, y, z)・dS
= (x, y, z)・(0, 0, -1) * |dS|
= -z * |dS|
= 0.

∴ I4 = 0.

したがって全体の面積分は I1+I2+I3+I4 = (3/2)πr^2 = 6π.

答え合ってますか?

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r...続きを読む

Qgrad、div、∇

物理なのか、数学なのかという感じなのですが・・・。

まず、grad、div、∇について、分かりやすく教えていただけませんか?。
それから、たとえば、圧力pがあったとして、「grad p」の物理的意味を教えて頂けるとうれしいです。

数学も物理も苦手なので、詳しく分かりやすく教えて頂けると幸いです。

よろしくお願い致します。

Aベストアンサー

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる場所から
水平方向に 10km 動いたってあまり気圧は変わりませんが,
空の方向に 10km 動けばエベレスト
(最近は,チョモランマとかサガルマータとか呼ぶかな)
より高くなって,気圧はうんと下がっちゃいます.
で,y,z 方向には全く動かず,x 方向にだけ動いたとします.
このときの p の変化の割合は,偏微分を使って ∂p(x,y,z) / ∂x ですね.
同様に,x,z を固定して y だけ動かせば,変化の割合は ∂p(x,y,z) / ∂y,
x,y を固定して z だけ動かせば,変化の割合は ∂p(x,y,z) / ∂z.
つまり,以上の3つの偏微分で変化の様子がわかります.
ばらばらに3つ扱ってもいいですが,
ベクトル表示にして
x 成分が ∂p(x,y,z) / ∂x,
y 成分が ∂p(x,y,z) / ∂y,
z 成分が ∂p(x,y,z) / ∂z,
というベクトルにしたのが grad p です.
ベクトルにしておくと,
表示が簡単なことの他にもいろいろ便利なことがあります.

なお,creol さんの回答ははちょっと混乱されているようです.
p は圧力(の強さ)そのもの,grad p は p の変化の割合です.
その場所での圧力は p です.

div は,creol さんも書かれているように,発散です.
極限値が発散する,などの発散とは全く違いますので,念のため.
例えば,水流中に仮想的な直方体を考えてください.
水流は流れの方向がありますからベクトル量ですね.
で,場所にもよりますから,j(x,y,z) と書きましょう.
テキストファイルじゃうまく書けないですが,j はベクトルです.
この直方体の面を通って単位時間あたりに流れ出ていく水量(流出量)が
本質的に div j です(本当はちょっと修正がいる,後述).
直方体の6面分全部考えてくださいよ.
水量ですから,スカラー量ですね.
え? 流出量ばかりじゃ直方体の中の水がどんどん減っちゃう?
ええ,それでいいんです.
つまり,div j は直方体の中の水量ρ
(スカラー量,本当は密度ですが)
の単位時間あたりの減少分を表しています.
式で書くなら, div j = - ∂ρ / ∂t です.
右辺のマイナスは減少だからついているんです.
ふつうの水流(例えば,川なんか)なら?
div j の計算のときに,流出量をプラスとして考えているので,
入ってくる分(流入量)はマイナスで考えてください.
ごくふつうに川が流れているとき,
上流の方から流入量と,
下流側への流出量は同じですよね.
そうすると,プラマイうち消して,div j = 0,
直方体の中の水量は時間変化しません.

え,直方体の大きさ?
あ,それはですね,十分小さくとってください.
小さくとれば,流入量も流出量も小さくなっちゃう?
実は,正味の流出量を直方体の体積で割って
直方体を小さくした極限が本当の div j です
ρが本当は密度だと言ったのもこういうところと関係があります.

微分で表現すれば
div j(x,y,z)
= ∂jx(x,y,z) / ∂x + ∂jy(x,y,z) / ∂y + ∂jz(x,y,z) / ∂z
です.
jx は j の x 成分,他も同様.


∇の記号は creol さんの書かれているとおり.
読み方は「ナブラ」(nabla) です.
ちょっと変わった名前ですが,
竪琴(形が似ている)のギリシヤ語名から来ています.

grad,div,と並んでベクトル解析でよく出てくるものに
rot (rotation,回転)があります.

わかりやすく,ということで回答してみました.

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる...続きを読む


このQ&Aを見た人がよく見るQ&A