たとえばある曲面Sにおける単位法線ベクトルが[1,1,1]であるときその単位ベクトルと反対向きのベクトル[-1,-1,-1]も単位法線ベクトルといえると考えてもよいのでしょうか?
以下は問題で
x^2+y^2-z-1=0であらわされた曲面Sの点(1,1,1)における単位法線ベクトルを求めよというものです。
r'x=i + 2xk
r'y=j + 2yk
としこれらのベクトル積を求めました。
大きさは3となったのですが、ベクトル積は歪対象則から[-2,-2,1]と[2,2,-1]ができてしまうと思います。
しかし答えとしては[2/3,2/3,-1/3]のみしか載っていません。
もしただひとつ決まるものならばどのような考えでそのひとつに決まるのでしょうか?
よろしくお願いします。
No.3ベストアンサー
- 回答日時:
単位法線ベクトルは絶対値が1ですから、絶対値で割ってやる必要がありますね。
(2,2,-1)の絶対値は 3 ですから 3で割って
(1/3)(2,2,-1)=
となるわけです。
数学では単位法線ベクトルが、向きが逆の
-(2/3,2/3,-1)=(-2/3,-2/3,1)
のどちらでも正解に入るでしょう。おそらく、より正の成分が多い方の
(2/3,2/3,-1)で代表させるのでしょう。
物理学や電磁気学では力や電気力線や磁界などの向きが問題になりますので、座標系やベクトル積を右手系で扱うとか、左手系で扱うとかに決めて、曲面にも正側、負側を決めてやります。
たとえばベクトル積の場合だと
A×Bのベクトルの向きを右手系で定義すると、AをBに重ねるように回転したとき、その回転面に対して垂直な方向に向けた右ネジを同じ向きに回転させた時、右ネジがすすむ方向をベクトル積の正の方向とする。
また別の例として、閉曲面の周囲を閉曲面を左に見て1周するとき、その面に立てた右ネジを同じ方向に回転させ右ネジが進む側の方の曲面を閉曲面の正の側とし、その正の側の方に向いた大きさ1の法線ベクトルを単位法線ベクトルと定義して不確定要素を排除しているかと思います。
右手系、左手系、その間の相互の変換については参考URLをご覧下さい。
参考URL
http://ja.wikipedia.org/wiki/%E5%8F%B3%E6%89%8B% …
http://www12.plala.or.jp/ksp/vectoranalysis/Axia …
http://wiki.livedoor.jp/atushiinliv/d/%BA%B8%BC% …
参考URL:http://www.core.kochi-tech.ac.jp/m_inoue/work/pd …
No.2
- 回答日時:
単位法線ベクトル の定義は、「単位」+「法線」+「ベクトル」です。
その条件を満たすベクトルが常に2個づつあることは、解りますね?
括り出した係数が正になるように、単位法線ベクトルの向きを決めておこう
という考え方は、あまり勧められません。
それをやり出すと、その例のようにベクトル積を考えるときに
↑a×↑b を使うべきか ↑b×↑a を使うべきか迷ったり、
ときには、本来不要な場合分けが生じたりしてしまいます。
ひとつには決まらないのだ…ということを、ちゃんと理解したほうが良い。
No.1
- 回答日時:
こんばんは。
>>>たとえばある曲面Sにおける単位法線ベクトルが[1,1,1]であるときその単位ベクトルと反対向きのベクトル[-1,-1,-1]も単位法線ベクトルといえると考えてもよいのでしょうか?
3つの成分が全部マイナス符号なので、「行儀が良くない」ということです。
ちなみに、[1,1,1]は単位ベクトルでないと思いますが・・・。
>>>[2/3,2/3,-1/3]のみしか載っていません。
2対1で、プラス符号の勝ち(笑)ということだからだと思いますよ。
おそらく、[-2/3,-2/3,1/3] と書いても、試験で減点されることはないでしょう。
この回答への補足
すいません、1/√3を忘れていました。
まだベクトル解析の応用は触れていないのでわからないのですが電磁気学への拡張を考えた際もそのように扱ってよいのでしょうか?
でも引力、反発力考えたらどちら向きか定めれるから問題ないのか・・・・・・。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 単位法ベクトルの問題を教えて下さい。 4 2023/06/01 01:24
- 数学 面素ベクトルについて質問です 位置ベクトル r↑=(x,y,f(x,y)) とすると ds↑=(∂r 2 2023/03/21 17:17
- 数学 数学の問題で法線ベクトルについて 5 2022/11/13 12:45
- 物理学 なめらかな水平面の床の上に、質量 200 g の物体がある。床の面を xy 面とし、鉛直方向に z 1 2022/07/23 11:28
- 数学 正射影ベクトルで垂直なベクトルを適当に1つもとめて解く問題は多々あると思うんですが 下の図のような問 4 2022/09/14 20:37
- その他(プログラミング・Web制作) 3Dモデルにおける法線の計算について(Python,OpenGL) 1 2023/04/25 23:46
- 数学 線形代数の問題について教えて欲しいです。 3 2023/05/06 23:13
- 物理学 ベクトルと座標系につきまして 1 2022/04/03 06:23
- 数学 (1)の平面の式を求める問題で ABベクトルとACベクトルの外積が平面の法線になるから ax+by+ 2 2023/04/13 13:50
- 数学 数B ベクトルについて質問です。 平面上に△ABCと点P、Qがあるとする。次の等式が成り立つ時、点P 2 2022/06/28 19:51
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
忘れられない激○○料理
これまでに食べたもののなかで、もっとも「激○○」だった料理を教えて下さい。 激辛、でも激甘でも。 激ウマ、でも激マズでも。
-
許せない心理テスト
私は「あなたの目の前にケーキがあります。ろうそくは何本刺さっていますか」と言われ「12本」と答えたら「ろうそくの数はあなたが好きな人の数です」と言われ浮気者扱いされたことをいまだに根に持っています。
-
うちのカレーにはこれが入ってる!って食材ありますか?
カレーって同じルーから作っても、家庭によって入っているものや味が微妙に違っていて面白いですよね! 「我が家のカレーにはこれが入ってるよ!」 という食材や調味料はありますか?
-
単位法線ベクトルの問題なんですが。。。
数学
-
放物線z= x^2 + y^2上の点(1,2,5)における単位法線ベクトルを求めよ。
数学
-
面積分
物理学
-
-
4
曲面の単位法線ベクトルと接平面の方程式
数学
-
5
単位法線ベクトルの求め方
数学
-
6
楕円の単位法線ベクトルがわかりません
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
行列とベクトルの表記の仕方に...
-
微積分の記号δ、d、Δ、∂の違い
-
一次独立だけど、基底にならな...
-
n次元ベクトルの外積の定義
-
平面の交線の方程式
-
複素数の絶対値の性質について
-
2つに直交する単位ベクトル
-
行列式が1とはどういう意味です...
-
2つの直交3次元ベクトル同士の...
-
正規直交基底であることの確認
-
「任意」ってどういう意味?
-
「ノルム、絶対値、長さ」の違...
-
一次従属の問題
-
WORDの数式エディタ
-
単位法線ベクトル
-
ベクトルについて
-
数学における「大きさ」とはな...
-
位置ベクトルの始点(起点)は必...
-
det(A)≠0 の必要十分条件を教え...
-
ベクトル方程式の問題について...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報