マンガでよめる痔のこと・薬のこと

 
電磁気学では電流の時間微分di/dt、電圧の時間微分dv/dtがよく出てきますが、これらを表す固有の物理名や量記号はないのでしょうか。

力学では速度の時間微分dv/dtは加速度と呼び量記号aを用い、角速度の時間微分dω/dtは角加速度と呼び量記号αを用いていますね。
 

このQ&Aに関連する最新のQ&A

A 回答 (4件)

No.2です。



ANo.2の補足に関連して

時間微分d/dtや時間積分∫dtは
交流理論では、
 d/dt ⇒ jω、 ∫dt⇒1/(jω)
で扱います。これによって微分方程式が加減乗除算で扱えるようになります。
交流理論では電圧や電流はAe^(jωt)の形式の実部または虚部に直して扱われます。
 Ldi/dt ⇔ jωLI (e^(jωt)は共通なので交流理論では省略される)
 (1/C)∫idt ⇔ I/(jωC) (e^(jωt)は共通なので交流理論では省略される)

過渡現象論では
 d/dt ⇔ s , ∫dt ⇔ 1/s
で扱います。
 これはラプラス変換対という双方向の積分変換で関係づけられています。

周波数スペクトル(伝送回路・フィルター設計、音声スペクトル、制御理論、信号処理論・通信理論)では、周波数解析、スペクトル解析、時間信号-周波数スペクトル変換において
jωやsやフーリエ変換対による積分変換で
 時間関数f(t) ⇔ 周波数スペクトルF(ω)
         (振幅スペクトルと位相スペクトル) 
と時間領域の関数を周波数領域で解析することもありますね。
 
    • good
    • 0
この回答へのお礼

 
ありがとうございます。

>交流理論では、
> d/dt ⇒ jω、 ∫dt⇒1/(jω)
>で扱います。これによって微分方程式が加減乗除算で扱えるようになります。

なるほど、良く分かりました。

新しい発見をしました。
 

お礼日時:2013/06/26 15:53

>普通の物理では



普通の物理でも加速度は位置か速度の微分かドット表記、
あるいは運動量の微分の形が多いですね。

無くとも困らないです。
    • good
    • 4

>電磁気学では電流の時間微分di/dt、電圧の時間微分dv/dtがよく出てきますが、これらを表す固有の物理名や量記号はないのでしょうか。



表す固有の物理名や量記号はありません。
必要性がないからでしょうね。
微分は、強いて名付ければ、電流変化率、電圧変化率と言えなくもないですが、実用上、必要性がないので、このような物理名や量記号は用意されていません。使われない、役に立たない物理名や量記号は定義しても仕方が無いでしょう。
微分に代わる、実用上の固有の物理名や量記号は沢山定義され使われていますが。
    • good
    • 0
この回答へのお礼

 
質問を補足しますと、

電磁気学は電荷q、磁束Φを基本物理量として出発するので、これより電荷qの時間微分dq/dtを電流i、磁束Φの時間微分dΦ/dtを電圧vとして導きます。

普通の物理では基本物理量の2階微分まで扱うのが決まりなので、電荷qの2階時間微分d2q/dt2や磁束Φの2階時間微分d2Φ/dt2などが出てくるわけで、通常これらには固有の物理名や量記号が与えられますよね。(実際、力学では距離lの2階微分として加速度a、角度θの2階微分として角加速度αを用いている)

それで本質問に至ったのですが・・・・
 

お礼日時:2013/06/26 09:25

di/dt、dv/dt を使うのは電磁気学と言うよりは電気回路理論のほうです。



電気回路では微分、積分をそのまま使う事は少なく、代わりに虚数単位 j (電気回路では i を電流に使うので j を使用する)や、ラプラス変換 s を使います。
電気が正弦波で表す事が出来る場合には j が微分、-j が積分の役割をします。
過渡現象を表す時はラプラス変換を使用します。
    • good
    • 0
この回答へのお礼

 
ありがとうございます。

> j が微分、-j が積分の役割をします。

それは電気回路の理論ですか。

お礼日時:2013/06/26 09:38

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電流がI=dQ/dtやI=-dQ/dtと表わしてある意味がわかりません

電流がI=dQ/dtやI=-dQ/dtと表わしてある意味がわかりません。
物理で、抵抗R、コンデンサC、スイッチSが閉じる回路があり、コンデンサCの両極に±Qの電荷がある。
このとき、スイッチを閉じ抵抗Rを通じて放電するときの電流の時間変化を求める問題において、I=-dQ/dtとして、微分方程式を立てて解くことみたいです。そのとき、なぜ、電流をI=-dQ/dtとするのがわかりません。下記のページ↓を見ても、なぜこの問題においてI=-dQ/dtとするのかわかりません。わかりやすく教えてください(+o+) お願いします。
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1222281602

Aベストアンサー

コンデンサーにたまっていた電荷が放電する場合ですからそれに合わせて考える必要があります。
#2に場面の説明と図があります。(抵抗Rを入れておく方が分かりやすいでしょう。)
その図で言うと電流の向きは反時計回りです。
この向きは+Qのある極板(Aとします)から-Qのある極板(Bとします)に向かって電荷が移動するということで決まります。逆は起こりません。電流が流れれば極板の上の電荷は減少します。
I=-dQ/dtです。
この式の中でのQは一般的な電荷の意味ではありません。極板Aの上の電荷の意味です。
だからこの式は方程式なのです。(定義式ではありません。)
(この場面でI=dQ/dtは出てきません。電荷が増加する方向に電流が流れるということが起こらないからです。起こるとしたら電池を接続しての充電の場合です。#2の図でいえばスイッチの入っている方向が違うのです。1つの場面に両方の式が出てくるということはありません。)

極板に電荷がたまっていればQ=CVで決まる電位差が存在します。
電流Iはこの電位差とも関係します。I=V/Rです。
I=Q/(CR)ですから微分方程式は Q/(CR)=-dQ/dtになります。
変数分離で解くと初期値をQoとして
Q=Qoexp(-t/(CR))

放電によって電荷が(指数関数で)減少するという結果が出てきました。
-をつけた式で考えたので矛盾のない結果になったのです。

充電の場合でしたら
I=dQ/dt
Q=CV
I=(E-V)/R  ・・・  (Eは電池の起電力)

t=0でQ=0という条件で解くと
Q=CE(1-exp(-t/(CR)))

t→∞でQ=CEです。
充電できました。

コンデンサーにたまっていた電荷が放電する場合ですからそれに合わせて考える必要があります。
#2に場面の説明と図があります。(抵抗Rを入れておく方が分かりやすいでしょう。)
その図で言うと電流の向きは反時計回りです。
この向きは+Qのある極板(Aとします)から-Qのある極板(Bとします)に向かって電荷が移動するということで決まります。逆は起こりません。電流が流れれば極板の上の電荷は減少します。
I=-dQ/dtです。
この式の中でのQは一般的な電荷の意味ではありません。極板Aの上...続きを読む

QRC並列回路(直流)の微分方程式が分かりません

RC並列回路(直流回路)の過渡応答の微分方程式がうまく導くことができません。
初期状態で,電荷Qがコンデンサに蓄えられています。
回路動作のイメージは出来ているのですが・・・。

どなたか,助けていただけませんか?
もうノートが真っ黒です。よろしくお願いします。

Aベストアンサー

とりあえず,ANo.5のaの回路を扱っておきます.
例によってスイッチSを閉じた瞬間を時刻t = 0とし,
電源から流出する電流をi,
抵抗を流れる電流をi_R,
コンデンサを流れる電流をi_Cとします.

キルヒホフの第1法則より
i = i_R + i_C. …(1)

第2法則より
v = r i + R i_R, …(2)
v = r i + (1/C)∫(-∞,t] i_C dt. …(3)

※私個人的には気持ち悪いのですが,式が煩雑になるのを避けるため,定積分の上端と積分変数に同じ文字を使いました.

※あと,デルタ関数とかの処理をきっちりするため,積分下端を-∞にしました.

ただし,
v = E u(t). …(4)

(1),(2)よりi_Rを消去して,
i_C = (1 + r/R)i - v/R.

これを(3)に代入して,
v = r i + (1/C)∫(-∞,t]{(1 + r/R)i - v/R}dt
dv/dt = r di/dt + (1 + r/R)i/C - v/(C R)

∴di/dt + (1 + r/R)i/(C r) = {dv/dt + v/(C R)}/r = (E/r){δ(t) + u(t)/(C R)}.

ただし,初期条件は E = r i(0) より
i(0) = E/r.

これがこの回路の微分方程式です.

----
この微分方程式はラグランジュの定数変化法で解くことができて,初期条件を考慮した解は,t > 0 において

i
= (E/r)exp{-(1 + r/R)t/(C r)}
+ E/(R + r) [1 - exp{-(1 + r/R)t/(C r)}],

したがって,

i_R = E/(R + r) [1 - exp{-(1 + r/R)t/(C r)}],

i_C = (E/r)exp{-(1 + r/R)t/(C r)}.

コンデンサの両端の電圧は

v_C = R i_R
= E/(1 + r/R) [1 - exp{-(1 + r/R)t/(C r)}]

以上の結果においてr→+0の極限を取ると,その振る舞いはANo.3の解と一致します.

とりあえず,ANo.5のaの回路を扱っておきます.
例によってスイッチSを閉じた瞬間を時刻t = 0とし,
電源から流出する電流をi,
抵抗を流れる電流をi_R,
コンデンサを流れる電流をi_Cとします.

キルヒホフの第1法則より
i = i_R + i_C. …(1)

第2法則より
v = r i + R i_R, …(2)
v = r i + (1/C)∫(-∞,t] i_C dt. …(3)

※私個人的には気持ち悪いのですが,式が煩雑になるのを避けるため,定積分の上端と積分変数に同じ文字を使いました.

※あと,デルタ関数とかの処理をきっちりするため,積分下端を-∞にしまし...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q電流、電圧の瞬時値表示と複素数表示について

電流、電圧の瞬時値表示と複素数表示についての質問です。
例に電圧を用います。
電圧は瞬時値表示では、
v(t)=√2Vsin(ωt+θ)
複素表示では、
V=Vexp(jθ)
で表されます。
どのように2つの式は関係しているでしょうか。瞬時値表示の√2や複素表示では消えている時間tなどどのように導いているのでしょうか。わかる方、リンクの添付でも結構ですのでよろしくお願い致します。

Aベストアンサー

No.1の補足に書かれた

>ベクトルVが実効値なのはなぜでしょうか。振幅そのままの√2Vではだめなのでしょうか?

 「V」は角周波数ωに依存しない「実効値」表現、「v(t)」は角周波数ωを含む「瞬時値」表現です。
 この両者の関係は、No.2さんのように「電気工学の約束ごと」と書いてしまうと身も蓋もないので、こんなサイトで一度「納得」しておいてください。
http://www.wakariyasui.sakura.ne.jp/b2/64/6433jikkouti.html

 要するに、「瞬時値」表現では、電圧や電流に常に「角周波数ω」が付きまといますので、これを直流のときと同じように「オームの法則:V=I*Z」で表現できるようにしたのが「複素数ベクトル」表現です(Zは、直流の「抵抗」に相当する「インピーダンス」)。「複素数ベクトル」表現では、電圧や電流は角周波数ωに依存しない「実効値」で表わします。

 なお、質問者さんの表記で、電圧や電流を「実効値」で扱うことで、

  V=Vexp(jθ)

と書かれていますが、左辺と右辺の「V」は別物ですから、

  V(交流)= |V| * exp(jθ)

と書いた方がよいですね。「V(交流)」は、通常「V」の上に「ドット」を付けて表わします。
 「exp(jθ)」と三角関数表現との関係は、No.1さんの回答のとおりです。

 ちなみに、この式の意味、この場合の「θ」の意味は分かりますか?
 「θ」は、「電流」を基準にしたときの「電圧」の「位相」(「電流」と「電圧」の sin 波のズレ角度)ということです。つまり、この「V(交流)」は、電流の sin 波に対して、電圧はこの「θ」だけズレた sin 波である、ということです。

No.1の補足に書かれた

>ベクトルVが実効値なのはなぜでしょうか。振幅そのままの√2Vではだめなのでしょうか?

 「V」は角周波数ωに依存しない「実効値」表現、「v(t)」は角周波数ωを含む「瞬時値」表現です。
 この両者の関係は、No.2さんのように「電気工学の約束ごと」と書いてしまうと身も蓋もないので、こんなサイトで一度「納得」しておいてください。
http://www.wakariyasui.sakura.ne.jp/b2/64/6433jikkouti.html

 要するに、「瞬時値」表現では、電圧や電流に常に「角周波数ω」が付きまといますの...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエミッタ接地増幅回路について教えてください><

教えていただきたいことは2つあります。
(1)エミッタ接地増幅回路はなぜ入出力波形の位相が反転するのでしょうか。
(2)エミッタ接地増幅回路はなぜ入力電圧が大きくなったとき出力波形が歪んでしまうのでしょうか。

1つでもわかる方がいらっしゃいましたらどうか回答よろしくお願いします。

Aベストアンサー

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波形の位相が反転することになります。

(2)
入力電圧Vbeが大きくなったとき出力波形が歪んでしまうのは、動作点が負荷線の線形動作範囲の上限に近づくとそれ以上Vceが頭打ちになって、出力電圧波形が飽和してしまいます。言い換えればコレクタ電圧Vceは接地電圧と直流電源電圧Vccの範囲でしか変化できません。その出力電圧波形は入力電圧Vbeが負荷線上の線形増幅範囲だけです。線形増幅範囲を超えるような大振幅の入力Vbeを入力すると出力電圧の波形が飽和して波形の上下が歪んだ(潰れた)波形になります。

お分かりになりましたでしょうか?

参考URL:http://www.kairo-nyumon.com/analog_load.html

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波...続きを読む

Q時定数について

時定数(τ=CR)について物理的意味とその物理量について調べているのですが、参考書等これといってわかりやすい説明がありません。どうが上記のことについて詳しく説明してもらえないでしょうか?

Aベストアンサー

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さいほど時間がかかります。逆に水槽が大きくても蛇口も大きければ水は短時間で出て行きますし、蛇口が小さくても水槽が小さければこれまたすぐに水槽はからっぽになります。
すなわち水がからっぽになるまでに要する時間の目安として
 水槽の大きさ×蛇口の小ささ
という数字が必然的に出てきます。ご質問の電気回路の場合は
 コンデンサの容量→水槽の大きさ
 抵抗→蛇口の小ささ
に相当するわけで、CとRの積がその系の応答の時間的な目安を与えることはなんとなくお分かり頂けると思います。

数式を使いながらもう少し厳密に考えてみましょう。以下のようにコンデンサCと抵抗Rとからなる回路で入力電圧と出力電圧の関係を調べます。
 + C  -
○─┨┠─┬──●
↑    <  ↑
入    <R  出
力    <  力
○────┴──●

入力電圧をV_i、出力電圧をV_oとします。またキャパシタCに蓄積されている電荷をQとします。
するとまず
V_i = (Q/C) + V_o   (1)
の関係があります。
また電荷Qの時間的変化が電流ですから、抵抗Rの両端の電位差を考えて
(dQ/dt)・R = V_o   (2)
も成立します。
(1)(2)を組み合わせると
V_i = (Q/C) + (dQ/dt)・R   (3)
の微分方程式を得ます。

最も簡単な初期条件として、時刻t<0でV_i = 0、時刻t≧0でV_i = V(定数)となるステップ応答を考えます。コンデンサCは最初は帯電していないとします。
この場合(3)の微分方程式は容易に解かれて
V_o = A exp (-t/CR)   (4)
を得ます。exp(x)はご存じかと思いますがe^xのこと、Aは定数です。解き方が必要なら最後に付けておきましたので参考にして下さい。
Cは最初は電荷を蓄積していないのですから、時刻t=0において
V_i = V = V_o   (5)
という初期条件が課され、定数Aは実はVに等しいことが分かります。これより結局、
V_o = V exp (-t/CR)   (6)
となります。
時間tの分母にCRが入っているわけで、それが時間的尺度となることはお分かり頂けると思います。物理量として時間の次元を持つことも自明でしょう。CとRの積が時間の次元を持ってしまうのは確かに不思議ではありますが。
(6)をグラフにすると下記の通りです。時刻t=CRで、V_oはV/e ≒0.368....Vになります。

V_o

* ←初期値 V        
│*
│ *
│   *         最後は0に漸近する
│      *       ↓
└───┼──────*───*───*───*─→t
t=0  t=CR
   (初期値の1/e≒0.368...倍になったタイミング)


【(1)(2)の解き方】
(1)の両辺を時間tで微分する。V_iは一定(定数V)としたので
0 = (1/C)(dQ/dt) + (dV_o/dt)
(2)を代入して
0 = (1/CR) V_o + (dV_o/dt)
-(1/CR) V_o = (dV_o/dt)
- dt = dV_o (CR/V_o)
t = -CR ln|V_o| + A
ここにlnは自然対数、Aは定数である。
この式は新たな定数A'を用いて
V_o = A' exp (-t/CR)
と表せる。

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さい...続きを読む

Q電圧Vと電界E間の関係式を微分形で表すとどのようになりますか?

電圧Vと電界E間の関係式を微分形で表すとどのようになりますか?

Aベストアンサー

あちゃー
ミスをしてしまいました。ごめんなさい。

電界の中にプラスの電荷をそっと置くと、その電荷には、電位がプラスの方面から電位がマイナスの方向に向かう斥力がかかりますね。
つまり、電圧の方向(坂道を上る方面)と電荷に働く力(坂道を転がり落ちる)は逆方向なので、

E = -dV/dx

ですね。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング