位置情報で子どもの居場所をお知らせ

隣接3項間の漸化式の解き方は高等学校数学で学習しますが,4項間,5項間,更にはn項間となった場合についてはどうなるのですか。

漸化式の解き方についてどこかで既にまとめられていますでしょうか。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

これとか↓


http://ufcpp.net/study/hs/sequence.html

「線型漸化式」といって、線形代数で習うけど、
三項間漸化式が解ってれば、高校生も解けるね。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q4項間漸化式

ふとした拍子で、次のような漸化式が出てきてしまいました。

ことの発端はこの問題です。
「n枚の硬貨を1列に並べるとき、表が3枚以上続かない場合の数を求めよ。」

n=1のとき 2通り

n=2のとき 4通り

n=3のとき 7通り(○○○を除く)

n=4のとき
1回目が×だと残りの樹形図はn=3と同じ。
○×××
││└○
│└○×
│ └○
└○××
  └○ さらにこの樹形図が加わるので、全部で13通り

これを眺めていると、
○×で始まるときは残りはn=2のときと同じなので4通り
○○×で始まるときは残りはn=1のときと同じなので2通り。
つまり、4番目は、以前の3つの和であることが推測されます。

これを踏まえたうえでn=5を考えると、
1枚目が×のときは残りの樹形図はn=4のときと同じはず。
○×となったときは残りの樹形図はn=3のときと同じはず。
○○×となったときは残りの樹形図はn=2のときと同じはず。
ですよね。

Q1 まず、この推測が正しいかどうかがわかりません。

正しいと仮定して続けさせていただきます。
n枚の硬貨を並べるとき、表が3枚以上続かない場合の数をA(n)とすると、
A(n+3)=A(n+2)+A(n+1)+A(n) という4項間漸化式が出てきてしまいます。

Q2 3つだったらフィボナッチなのですが、これは何か名前があるのでしょうか?もう、誰かが解いていますか?
一応途中まで頑張っているのですが字数の関係で表現できません。よろしくお願いします。

ふとした拍子で、次のような漸化式が出てきてしまいました。

ことの発端はこの問題です。
「n枚の硬貨を1列に並べるとき、表が3枚以上続かない場合の数を求めよ。」

n=1のとき 2通り

n=2のとき 4通り

n=3のとき 7通り(○○○を除く)

n=4のとき
1回目が×だと残りの樹形図はn=3と同じ。
○×××
││└○
│└○×
│ └○
└○××
  └○ さらにこの樹形図が加わるので、全部で13通り

これを眺めていると、
○×で始まるときは残りはn=2のときと同じなので4通り
○○×で始ま...続きを読む

Aベストアンサー

綺麗な漸化式ができましたねえ。2連続と考えればフィボナッチ数列の解釈になる。一般にj連続と考えることで一群の漸化式が出てくる。これだけで素敵な成果じゃないですか。
 数列の一般項を求めても、それが難しい関数や総和を含んでいるようでは、漸化式で計算したほうがましだったりしないとも限りません。
 余談ながら比 x=A(N)/A(N-1)がN→∞において収束するとすれば、
x^3-x^2-x-1=0
という方程式の実数解ですから、
 x=(19/27-√(11/27))^(1/3)+(19/27+√(11/27))^(1/3)-1/3
なんてことになります。

 では、ちょいと観点を変えてみましょう。
A:「裏ばかりの硬貨が一列に並んでいる。その個数(は幾つでも良いがこれ)をMとする。その隙間、あるいは列の先頭や末尾に、適当に表の硬貨を挿入して行く。ただし、各挿入箇所に挿入する表の硬貨の数は0か1か2でなくてはならない。表の硬貨を挿入できる箇所はM+1箇所ある。挿入した表の硬貨の総数をKとすると、N=M+Kが列全体の長さである。Nを固定したとき、場合の数A(N)を求めよ。」これは元もとの問題を別の言い方で表してます。
 Nを固定して考えると、0≦K≦2(M+1)ですから、
(1) 0≦K≦(2N+2)/3
でなくてはなりません。
 さて、NとKが与えられたとします。するとK個の表の硬貨をいかにしてM+1個の挿入箇所に配分するかという問題です。すなわち
B(N,K):「K個の(表の)硬貨をM+1=N-K+1人で分ける。ただし一人最大2個しか貰えない。場合の数を求めよ」
を考えることができる。その解B(N,K)をK=0,1,....,floor[(2N+2)/3] について加えたものがA(N)になります。
A(N) = B(N,0)+ B(N,1) + ...... + B(N,floor[(2N+2)/3] )
この問題B(N,K)は、さらに次の問題に帰着できます。
C(N,K,h):「N-K+1人の中から、硬貨2つを貰えるヒトh人を選ぶ。残りのN-K+1-h人の中から硬貨1つを貰えるヒト(K-2h)人を選ぶ。場合の数を求めよ。ただし2h≦Kである。」
すなわち
B(N,K) = C(N,K,0)+C(N,K,1)+.....+C(N,K,floor[K/2])
ですね。

ここで、問題c(n,j):「n人のうちからj人を選ぶ場合の数を求めよ」
を考えますと、ご承知の通り、
・j>nの場合にはc(n,j)=0
・0≦j≦nの場合にはc(n,j)= n! / (n-j)!/j!
ということになる。だから
C(N,K,h) = c(N-K+1,h)c(N-K+1-h,(K-2h))
である。
かくて、二重の総和を使って無理矢理ながら元の問題の解が表せることまでは分かりました。それが具体的に綺麗な式に整理できるかどうかがポイントですが.....
これで、おしまい。無責任だなあ。

綺麗な漸化式ができましたねえ。2連続と考えればフィボナッチ数列の解釈になる。一般にj連続と考えることで一群の漸化式が出てくる。これだけで素敵な成果じゃないですか。
 数列の一般項を求めても、それが難しい関数や総和を含んでいるようでは、漸化式で計算したほうがましだったりしないとも限りません。
 余談ながら比 x=A(N)/A(N-1)がN→∞において収束するとすれば、
x^3-x^2-x-1=0
という方程式の実数解ですから、
 x=(19/27-√(11/27))^(1/3)+(19/27+√(11/27))^(1/3)-1/3
なんてことになります...続きを読む

Q隣接4項間漸化式の行列を用いた解法

隣接4項間漸化式の行列を用いた解法

x(n+3)-2x(n+2)-x(n+1)+2x(n)=0
※ここでの括弧内の項はxの下付文字を表しています。

そしてまず,x0=3,x1=2,x2=6という初期条件が与えられています。


(1)ベクトルX(n+1)=TX(n)を満たす行列Tを求めよ。

ただし、ベクトルX(n)=( x(n) )
               (x(n+1))
               (x(n+2))    とする。

(2)T固有ベクトルを求めよ。ただし、各固有ベクトルは、第1成分を1とするものを求めよ。

(3)ベクトルX0=(3)
           (2)
           (6)
を問(2)で求めたTの固有ベクトルの線形和の形で表せ。

(4)問(3)の結果を用いてx11を求めよ。ただし、求めるx11の値だけ示すのではなく、回答の過程も示すこと。


という問題です。
私は問(3)まで解けて問(4)はわかりません。ご回答お願いします!

ちなみに、

固有値は1、-1、2

T= (0 1 0)
   (0 0 1)
   (-2 1 2)


X0= (1)    (1)   (1)
   (1) +   (-1) + (2)
   (1)    (1)    (4)

隣接4項間漸化式の行列を用いた解法

x(n+3)-2x(n+2)-x(n+1)+2x(n)=0
※ここでの括弧内の項はxの下付文字を表しています。

そしてまず,x0=3,x1=2,x2=6という初期条件が与えられています。


(1)ベクトルX(n+1)=TX(n)を満たす行列Tを求めよ。

ただし、ベクトルX(n)=( x(n) )
               (x(n+1))
               (x(n+2))    とする。

(2)T固有ベクトルを求めよ。ただし、各固有ベクトルは、第1成分を1とするものを求めよ。

...続きを読む

Aベストアンサー

まず, 問(1) で定義したベクトル X(n) は x(n), x(n+1), x(n+2) を縦に並べたものです. 問(4) で求められているのは x(11) ですから, 例えば X(9) を計算すれば x(11) はわかるはずです (ついでに x(9), x(10) も求まりますが). これはいいでしょうか?

次に, このベクトル X(n) は (問(1) から)
X(n+1) = T X(n)
という漸化式を満たします. これは「等比数列」と同じような漸化式ですから, 一般項 X(n) を等比数列と全く同様に求めることができます. これで, X(0) を使って X(9) を求めることができます.

そして, 一般に x を A の固有ベクトル, λ を対応する固有値とすると
A^n x = λ^n x
となります (確かめてみてください). 問(3) で「X(0) を固有ベクトルの線形和の形で表した」のはこの関係式を使いたいからです.

ん, あんまりうまく説明できないなぁ. 重要な部分は一応書いたつもりだけど, やってみて不明なところがあったらまた書いてください.

まず, 問(1) で定義したベクトル X(n) は x(n), x(n+1), x(n+2) を縦に並べたものです. 問(4) で求められているのは x(11) ですから, 例えば X(9) を計算すれば x(11) はわかるはずです (ついでに x(9), x(10) も求まりますが). これはいいでしょうか?

次に, このベクトル X(n) は (問(1) から)
X(n+1) = T X(n)
という漸化式を満たします. これは「等比数列」と同じような漸化式ですから, 一般項 X(n) を等比数列と全く同様に求めることができます. これで, X(0) を使って X(9) を求めることができます.

そして...続きを読む

Qいい数学の先生ってどんな教え方をする先生でしょうか?

こんばんは。

いい数学の先生ってどんな教え方をする先生だと思いますか?

抽象的な質問ですみません。
例えば、
・公式はたくさん覚えるべきだ、と主張する先生
・とにかく問題はたくさんとくべきだという方針の先生
のような感じで答えていただけるとうれしいです。

Aベストアンサー

『良い選手は良い監督になれない』では無いかなぁと思います。
中には王監督のように良い選手でありよい監督である事もありますよ。
ではその差は何か?と考える…

理論的な頭からすれば数学の目標はいち早く答えにたどり着く事かと思うんです。
そうなると途中の計算式や考え方ではなく、『こう言う問題はこう考えてこう答える』
これがマニュアル化してしまう可能性があるんですね。
ですから『わけ解らないまま答える』という事が大いにありうるんです…

確かに、実際の数学の試験では問題解決の方針を考えている余裕が無い事が多いです。
ですが、どう考えるのかどういうものかを、しっかり教える先生が良い先生かと思うんです。

私は数学が大好きで理系大学に入り、朝な夕な家庭教師をしていました。
私が良い教師であるかは、生徒にきかなければわからないでしょう。
ですが少なくとも、中学高校時代の数学教諭と比較して『解りやすい』とは言わていましたね。

何のためらいも無く公式を言う、『ここまで教えなさい』という事が頭から離れない教師と
自由奔放に以下に数学って面白いんだよを主張する私では比べてはいけないのでしょうけれど…
例えば2次関数
私は家庭教師時代とにかくグラフを書かせる事に徹しました。
展開や因数分解などしない、とにかく式からグラフを書かせるんです…
公式はその後でした。
式の変形は公式は必要ないんですね。きちんとどういうものかを見せる事により
計算結果が雰囲気で正誤判定ができるようになりました。
パズルのようなものです。算数は平気なのに数学になったと慌てるから駄目
算数と同じようにじっくり解るように教えれば、後は生徒に任せていても実に速く解けるようになるんですね。
待て!と言ってもどんどん次から次へ進んでしまう…
『良い点数を取らせる事』よりも『数学は楽しい』と言ってもらえる事を目指すのが良い先生かなぁなんて我ながら思いました…

と言いつつも、いまだに忘れない言葉があります。
『紫蘭先生のおかげで点数がが25倍になった!』
普段出来てもせいぜい一問、4点だった生徒が100点満点を取ったんだな…
あの時は驚いて次の瞬間、自分の事のように泣いてしまった…

もし宝くじで3億円当たったら家を建てて、その一室でもう一度、家庭教師をしたいなぁなんて思う紫蘭でした…
箇条書きになっていませんでしたね失礼しました…

・数学のイメージをきちんとつけてくれる先生
・数学は実は楽しいという事を気づかせる先生
と言う所でしょうか…

『良い選手は良い監督になれない』では無いかなぁと思います。
中には王監督のように良い選手でありよい監督である事もありますよ。
ではその差は何か?と考える…

理論的な頭からすれば数学の目標はいち早く答えにたどり着く事かと思うんです。
そうなると途中の計算式や考え方ではなく、『こう言う問題はこう考えてこう答える』
これがマニュアル化してしまう可能性があるんですね。
ですから『わけ解らないまま答える』という事が大いにありうるんです…

確かに、実際の数学の試験では問題解決の方針...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q多項間漸化式

数学の授業で3項間漸化式をやったとき
ふと4項間漸化式の一般項が知りたくなりました。
しかしいろいろ試しましたが分かりません。
質問No.84673の「4項間漸化式」も見させていただきましたが、
結局、漸化式の問題ではないという感じで終わっていてよく分かりません。

たとえば3項間ならば特性方程式と二次方程式の解の公式から
a(n+2)-(α+β)*a(n+1)+αβ*a(n)=0 となるα,βを求め(α≠β)
(

Aベストアンサー

>ところで、guiterさんの出してくださった
>a(n) = [a(2)sin{(n-1)θ} - r*a(1)sin{(n-2)θ}] * r^(n-2) / sinθ は
>a(n)が整数であることの証明になるのでしょうか。
少し言葉足らずでした。
式変形に困っておられるのだと思い、
極形式での結果を書いただけですので、これだけで整数とは言えません。
少し考えてみましたが一般項から直接証明というのは難しそうですね。

やはり、masuo_kun さんも書かれておられるように
 (1) n=1,2 で成り立つ。
 (2) n=k,k+1 で成り立つとき n=k+2 で成り立つ。
というように素直に帰納法で証明するのが良さそうです。

Q分子結晶と共有結合の結晶の違いは?

分子結晶と共有結合の結晶の違いはなんでしょうか?
参考書を見たところ、共有結合の結晶は原子で出来ている
と書いてあったのですが、二酸化ケイ素も共有結合の
結晶ではないのですか?

Aベストアンサー

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素SiO2の場合も
Si原子とO原子が共有結合し、この結合が立体的に繰り返されて
共有結合の物質というものをつくっているのです。
参考書の表現が少しまずかったのですね。
tomasinoさんの言うとおり、二酸化ケイ素も共有結合の結晶の1つです。

下に共有結合の結晶として有名なものを挙げておきます。

●ダイヤモンドC
C原子の4個の価電子が次々に4個の他のC原子と共有結合して
正四面体状に次々と結合した立体構造を持つのです。
●黒鉛C
C原子の4個の価電子のうち3個が次々に他のC原子と共有結合して
正六角形の網目状平面構造をつくり、それが重なり合っています。
共有結合に使われていない残りの価電子は結晶内を動くことが可能なため、
黒鉛は電気伝導性があります。
(多分この2つは教科書にも載っているでしょう。)
●ケイ素Si
●炭化ケイ素SiC
●二酸化ケイ素SiO2

私の先生曰く、これだけ覚えていればいいそうです。
共有結合の結晶は特徴と例を覚えておけば大丈夫ですよ。
頑張って下さいね♪

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素Si...続きを読む

Qタンジェントとアークタンジェントの違い

タンジェントとアークタンジェント、サインとアークサイン、コサインとアークコサインの違いをすごく簡単に教えてください。

Aベストアンサー

タンジェントやサイン、コサインは、角度に対する関数です。
例えば
 tan60°=√3
のような感じで、角度を入力すると、値が出てきます。

逆に、アークタンジェントなどは、数値に対する関数です。
 arctan√3=60°
などのように、数値を入力すると角度が出てきます。

そして、タンジェントとアークタンジェントの関係は、
springsideさんも書いてありますが、逆関数という関係です。
逆関数というのは、原因と結果が逆になるような関数です。
例えば、
  45°→タンジェント→1
  1  →アークタンジェント→45°
のように、「1」と「45°」が逆の位置にありますよね?
こういう関係を、「逆関数」というんです。

どうでしょう、わかりましたか?

Qdxやdyの本当の意味は?

宜しくお願いします。

昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。

結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。

実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?

どなたかご教示いただけましたら幸いでございます。

Aベストアンサー

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。

さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。

y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)
と表される。

これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。

その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。

微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。

なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、...続きを読む

QΠ←これは一体?

数学書の中にΠ(パイの大文字)みたいなという記号がΣのような使い方をされていたのですが、この記号は一体どういう意味なのでしょうか?

Aベストアンサー

Σが数列a_nに対し
Σa_k=a1+a2+a3+…anとなるのに対し
Πa_k=a1・a2・a3・…anとなります

あまり使われないのではないかと思います

Qすごく特殊な漸化式、一見解けそうにも無いけど解けるもの

僕は、高校の数学にたずさわるものです。
長年、高校数学をやっていると、たとえば、普通の漸化式などは、見ていて飽きてきます。
そこで、アンケート的で申し訳ないですが、表題のような漸化式と、その解法を紹介していただけないでしょうか。
できるかぎり珍しいものが好みです。
僕のほうから、例を一つ。

a_(n+1)=2(a_n)^2-1 , a_1=c (ただし、-1≦c≦1)

(解法)
a_n=cos b_n
とおくと、
cos b_(n+1)=2(cos b_n)^2-1=cos 2b_n (2倍角より)
よって、
a_n=cos b_n
=cos 2b_(n-1)
=……=cos {b_1*2^(n-1)}
ただし、cos b_1=cよりb_1=arccos c

ただ、初項を区間(1,∞)に変化させればどうなるとか、漸化式の係数を変化させればどうなるかとかは、わかりませんので、それについてもアイデアがありましたら、教えていただきたいです。

Aベストアンサー

cos または cosh の倍角の公式に因むものはいくつか作ることが出来ます。
たとえば
a_(n+1)=(a_n)^2-2a_n
はa_n=cos b_n+1 と置けば同様に倍角の公式に導けます。
また、
a_(n+1)=p(a_n)^2-2/p
は a_=2/p cos b_nとすれば同じ様にできます。
しかし、二次の漸化式の解がすべて同じ様にとけるかといえばそうではありません。
a_(n+1)=(a_n)^2-2a_n+2
などは a_n=exp(b_n)+1 と置けばb_nが公比2の等比数列であることが出て来ます。
こういったものは解から漸化式を作ったので、一般的には解を簡単に表わせません。

タンジェントの倍角の公式からも変わった漸化式が作れます。

解き難いわけではありませんが
a_(n+1)=1+1/a_n, a_1=1
などは面白い性質を持っています。
a_nは分数となるのでその既約分数をp_n/q_nとするとp_nもq_nもフィボナッチ数列となります。(一つずれていますが)
当前のことながら連分数と関係があります。

cos または cosh の倍角の公式に因むものはいくつか作ることが出来ます。
たとえば
a_(n+1)=(a_n)^2-2a_n
はa_n=cos b_n+1 と置けば同様に倍角の公式に導けます。
また、
a_(n+1)=p(a_n)^2-2/p
は a_=2/p cos b_nとすれば同じ様にできます。
しかし、二次の漸化式の解がすべて同じ様にとけるかといえばそうではありません。
a_(n+1)=(a_n)^2-2a_n+2
などは a_n=exp(b_n)+1 と置けばb_nが公比2の等比数列であることが出て来ます。
こういったものは解から漸化式を作ったので、一般的には解を簡単に表わせ...続きを読む


人気Q&Aランキング