人気マンガがだれでも無料♪電子コミック読み放題!!

こんにちわ、固体物理やX線などの参考書にでてくるブラベー格子の面間隔について質問です。

参考書ででてくるd(hkl)=~~~ という式なのですが、この導出がゼミの範囲になってしまい、うまく導出できず教授にぼろカスに言われ今日この範囲から外されてしまいました。

いくつか参考書を当たってみたのですが見つからず、偶然ネットにあった下記のurlを参考にゼミを行いました。
http://ww7.enjoy.ne.jp/~nminami/physics/BUSSEI.PDF

特に(4-27)式から(4-30)式に行く過程がうまく導けませんでした。
また先ほど(4-27)式から(4-30)式を変形している時に思ったのですが、この単位胞の体積の求めかたは単斜晶などの、例えばx軸とz軸が垂直でない場合は使えないのではないかと思いました。

最後になりますが以上をふまえて質問させていただきます。
各結晶系の面間隔は上記urlから導出ができるのか、また別の簡単な方法があるのか
です。

理系なんだから自分で苦労して考えろよと思われると思いますが、なにとぞよろしくお願いいたします。

A 回答 (1件)

>この単位胞の体積の求めかたは単斜晶などの、例えばx軸とz軸が垂直でない場合は使えないのではないかと思いました。



どうしてそう思ったのか(例えばどこでx軸とz軸が垂直という条件を使ったと思ったのか)を書いてくれないと、気のせい・勘違いとしか言いようがありません。


>各結晶系の面間隔は上記urlから導出ができるのか、
計算のフォローはしていないですが、間違った事はしていないように思います。

>別の簡単な方法があるのか
格子定数で単位胞の体積がどう表されるのか、という事を考えるのであれば十分に簡単な方法だろうと思います。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qミラー指数:面間隔dを求める式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2)

となる。

なぜこうなるのか証明せよといわれたのですが
どうやってすればよいでしょうか?
2次元で考えると簡単だと聞いたのですが…。

Aベストアンサー

高校の知識しか使ってないと思いますが、、、基本並進ベクトルや逆格子ベクトルがまずかったですか?ミラー指数の定義を知っていれば当然知っていると思ったのですが。三平方の定理では中学生の知識ですよね。まあ良いです。一般的な証明にはならなくなりますが、平面で三平方の定理のみを使って証明してみます。

平面の場合、(hkl)面は(na/h,0)、(0,na/k)を通る直線に対応すると思います。n=0の場合とn=1の場合の直線間の距離を求めてみます。

n=1の場合の直線(直線1とします)は(a/h,0)と(0,a/k)を通る直線でn=0の場合の直線は原点を通り、直線1と平行な直線になります。2つの直線の距離は原点と直線1との距離で求められます。

平面上に原点O、点A(a/h,0)、点B(0,a/k)の3点を書いてみましょう。原点と直線ABとの距離dは原点から直線ABに下ろした垂線の足を点Hとして、OHで求められます。

三角形OABは直角三角形なので、
OA・OB=AB・OH
より、
d=OH=OA・OB/AB=(a/h・a/k)/√((a/h)^2+(a/k)^2)=a/√(h^2+k^2)
となります。

これでよいでしょうか?

書いていて気づいたのですが、これが課題やレポートのテーマであった場合、回答するのは規約違反になるんですね。

高校の知識しか使ってないと思いますが、、、基本並進ベクトルや逆格子ベクトルがまずかったですか?ミラー指数の定義を知っていれば当然知っていると思ったのですが。三平方の定理では中学生の知識ですよね。まあ良いです。一般的な証明にはならなくなりますが、平面で三平方の定理のみを使って証明してみます。

平面の場合、(hkl)面は(na/h,0)、(0,na/k)を通る直線に対応すると思います。n=0の場合とn=1の場合の直線間の距離を求めてみます。

n=1の場合の直線(直線1とします)は(a/h,0)と(0,a/k)を通る直...続きを読む

Q面間隔の意味がわかりません

面間隔の意味がわかりません
立方格子の結晶面(hkl)の面間隔=a/√(h^2+k^2+l^2)(式(1))だと習いました.
この式の説明として「面間隔は原点から面までの距離」ということが出てきました.
僕は面間隔の説明として「ある面の面間隔は,その隣りの立方格子の同じ位置にある結晶面までの距離」だと思っていました.

ここで思ったことがあります.
結晶面(020)の面間隔を求めるとします.

この数値式(1)に代入するとd=a/2となります.
これが正しいなら「面間隔は原点から面までの距離」と言う説明があっているような気がします.

しかし,(020)は最もかんたんな整数比に直すと(010)となり,面間隔d=aとなります.
これが正しいなら「ある面の面間隔は,その隣りの立方格子の同じ位置にある結晶面までの距離」が合っている気がします.

どちらが面間隔の説明として正しいのですか?

Aベストアンサー

結晶模型を組んで横から見てください。
1つの面上に格子点が並んでいる面がいくつか見えます。
こういう面があるということがまず出発点です。

>面間隔は原点から面までの距離

原点は数学的な原点ではありません。格子点の1つです。
立方格子の1つの格子点を原点にとっているのです。
この原点を通る面も同じようにあるのです。
「原点から面までの距離」というのは
「原点を通る面とその隣の面までの距離」と言っていることと同じです。

立方格子の結晶模型といっても立方格子を作る6つの格子点だけでできた模型を考えている場合が多いです。体心立方格子ならその中にもうひとつ格子点を入れます。
これでは面を考えるのには不足です。
10個ぐらい立方体が繋がっている模型を作って考えてみてください。

Q格子の面間隔について

お世話になってます立方格子の面間隔について教えていただきたいのですが格子定数がaとしたときミラー指数(110)の面間隔についてですが

面心立方格子はa/2√2、体心立方格子の場合a/√2となりますよね?

面心立方格子がこうなる理由が分からないです。

これはxyzの座標軸を取った時に真上から見るとx=y=a/2となるところに原子が存在するということでこのような長さになるのでしょうか?
それともこの考え方ではおかしいのでしょうか。
だとすると体心立方と面心立方各々の(111)での面間隔はどのようになるのでしょうか?

分かりにくい日本語になってしまいましたが、どなたか教えてください。
お願いしますm(__)m

Aベストアンサー

回答2の回答者です。

> 結晶の全体構造をとらえるためには「単位構造」で考えた方がよいが、面間隔などを求めるためには「最小単位構造」で考えた方がよいということなのでしょうか?

基本単位構造の作り方はいくつも有りますし、たいていの場合には分かりにくい形になるので、必ずしもお勧めでは無いですが。何故、単位構造の基本面間隔が本当の面間隔にならないのか?という理解の1方法と思います。

> もう一つ分からないことがあるのですが、面心立方(100)の間には(200)面が存在するとのことですけど(100)面の間には(1/2 00)面があるように思えるのですがどうして(1/2 0 0 )ではなく(2 0 0 )と表せるのでしょうか?

ミラー指数(h,k,l)の定義は、それぞれの座標軸の単位格子位置の1/h,1/k,1/lの切片を含む面であることを忘れていませんか?つまり、面指数の場合には、数字が大きい方が原点に近い面になります。格子位置を表す方向ベクトルの指数とは大小関係が逆になりますので、注意してください。
なぜ、こういう変な指数定義をするかというと、この先に結晶構造やそれに関連した物理現象を考えていくのには、結晶の格子or面間隔よりもその逆数を使うことの方が圧倒的に多いからです。それで、結晶構造解析などでは、格子位置の逆数を使った「逆格子空間」というものを頻繁に使います。この逆格子空間ではミラー指数の定義が便利なわけです。

回答2の回答者です。

> 結晶の全体構造をとらえるためには「単位構造」で考えた方がよいが、面間隔などを求めるためには「最小単位構造」で考えた方がよいということなのでしょうか?

基本単位構造の作り方はいくつも有りますし、たいていの場合には分かりにくい形になるので、必ずしもお勧めでは無いですが。何故、単位構造の基本面間隔が本当の面間隔にならないのか?という理解の1方法と思います。

> もう一つ分からないことがあるのですが、面心立方(100)の間には(200)面が存在するとの...続きを読む

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。

Qブラッグの式で使われるn次反射について

ブラッグの式で使われるn次反射についてお聞きしたいのですが、
nは1からあるようなのですが、いまいちn次反射についてわかりません。
n次反射について詳しく教えていただけないでしょうか?

Aベストアンサー

ブラックの反射式は
2d sin θ=nλ
(d:面間隔,θ:入射角,λ:波長)
ですね。
nは2d sinθが波長(λ)何個分に相当するかを示した数値です。そのままですね。
あるθ1とθ2で反射ピークを観測したとします。
その時、2d sin θ1=λ、2d sin θ2=2λ
を満たすとき、θ2に現れた反射ピークはθ1で観測した反射ピークの2次反射であるといいます。
高次反射は必ず発生しますが、nが大きくなればなるほど広角になるので反射強度が弱くなり観測が難しくなります。

余談ですが、このn値は逆格子上の指数?(h,k,lの最小公倍数の倍数)と一致します。X線主体の本はこれで説明することが多いようですが、実格子と逆格子を併用してイメージするのはかなり難しいと思います。逆格子は解析するには便利なツールですが、これで現象を理解する事はかなり難しいと思います。

Q固相焼結と液相焼結について

焼結について勉強しているのですが、本の中にこの二つの言葉(固相焼結と液相焼結)が出てくるものの詳しい説明が載っていません。この二つはどのようなものなのでしょうか?

Aベストアンサー

まず「焼結」ですが、「固体の粉体を高温(ただし融点以下)に加熱した場合、粉末の粒子が相互に結合し緻密な多結晶体となる現象」などと説明されるのはご存じかと思います。

粉体の粒子が、相互に・緻密に結合するには何らかの物質移動が必要です。
いま下の図のように二つの粒子AとBがあり、BがAと結合しながら飲み込まれつつある状況を考えてみます。周囲の環境は真空(あるいはこれらの物質と反応しない気相)だとします。

  ___ 
 /   \ ←←表面拡散
│     ┃ ̄\
│ 粒子A ┃B │
│     ┃_/
 \___/

図1 固体の粒子のみ存在する場合

その際、粒子間の物質移動の経路は
(1)ABの界面(太線)を通じた固体内拡散
(2)物質表面での表面拡散
の2つのみです。このように系に液相が存在せず、固体である粒子間で直接物質のやり取りをして緻密化が進む現象を「固相焼結」と呼びます。

これに対し、上記の系が何らかの液体中に埋まっていた場合について考えてみます。粒子AとBの間にも液相は入り込むとします(毛細管現象です)。

  ___  液 相
 /   \ 
│     ││ ̄\
│ 粒子A ││B │
│     ││_/
 \___/ ↑粒子間にも液相

図2 固体粒子が液相中に存在する場合

すると今度は、液相を介した溶解-析出過程を物質の移動経路として利用することが可能になります。このように系に液相が存在し、液相を介しての物質輸送が支配的である焼結を「液相焼結」と呼びます。
一般に固体内の拡散に比べ液体中の物質拡散ははるかに速く、また液相を介すことで直接接していない粒子間の物質移動も可能となるため、通常は液相焼結の方が固相焼結より速く進みます。
実際の焼結過程では、焼結させたい物質より融点が低く、かつ焼結させたい物質を液相になったときよく溶かすような物質を原料粉末に混ぜておきます。この粉体を加熱すると加えた物質が液相となるわけです。あるいはある種のセラミックスの焼結のように、粒子表面の自然酸化層が添加物と反応して液相を形成する例もあります。
なお液相が生成すると粒子の再配列が起きやすくなり、これも焼結の促進に寄与します。

まず「焼結」ですが、「固体の粉体を高温(ただし融点以下)に加熱した場合、粉末の粒子が相互に結合し緻密な多結晶体となる現象」などと説明されるのはご存じかと思います。

粉体の粒子が、相互に・緻密に結合するには何らかの物質移動が必要です。
いま下の図のように二つの粒子AとBがあり、BがAと結合しながら飲み込まれつつある状況を考えてみます。周囲の環境は真空(あるいはこれらの物質と反応しない気相)だとします。

  ___ 
 /   \ ←←表面拡散
│     ┃ ̄\
│ 粒子A ┃B │
...続きを読む

Q原子形状因子(キッテル固体物理学)

キッテルの固体物理学の逆格子のところを読んでおります。

形状因子(原子散乱因子)
r:ベクトル G:逆格子ベクトル
f_j=∫dVn_j(r)exp(-iG・r)
積分は1個の原子に属する電子密度全体にわたって行う。
G・r=Grcosα
α:Gとrのなす角
d(cosα)について-1と1の間で積分
f_j=2π∫drr^2d(cosα)n_j(r)exp(-iGrcosα)
のところで、微小体積要素が2πdrr^2d(cosα)となることを導くには、どのような図を描いたらいいのでしょうか?

ちょうど2章の49式の下のほうなのですが、cosαで積分するという見慣れない式なので・・・。

Aベストアンサー

d(cosα)

を実際に計算してみればわかるのではないでしょうか?
よく見る形になるはずです。

Q六方晶における格子面を(0001)と4桁で

3次元結晶の場合、格子の面や格子ベクトルは
3つの数字の組(001)などで確か全て表せます。

六方晶でも3つの数字の組で表せるのですが、4つの数字の組で表した方が理解しやすいので、この記法が使われることがあります。

4つの数字と3つの数字の関係はどうなりますか?
4つの数字には別の拘束条件がありそうですが、
いかがでしょうか?

このことについて書いてあるwebとか本をご存知ないですか? ちょっと探したけれど見つからなかったので。

よろしくお願いいたします。

Aベストアンサー

六方結晶の場合は(0001)というような表し方ですね。いわゆるc軸が4桁目になります。(h,k,l,m)の場合、h + k = -l の関係があります。

参考URLに出典例を書きましたが、"ミラー指数" "0001"で検索すると、関連ページが56件ありました。

参考URL:http://www.f-denshi.com/000okite/300crstl/304cry.html

Q結晶の面間角計算フリーソフトについて

タイトルのような面間角を計算できるフリーソフトはないでしょうか?
宜しく御願いします。

Aベストアンサー

どの程度の事をなさりたいのか意味が分かりません?
結晶の面間隔、格子定数を理論計算だけで求めるソフトをただで手に入れようと思ったら、直接研究者にコンタクトをとり、理由とあなたが寄与できる事を述べて送ってもらう以外、難しいと思います。
参考までに、
http://publik.tuwien.ac.at/files/PubDat_173998.pdf
には、いろいろな計算法の比較が出ています。

もし、X線回折の結果を解析したいだけなら、探す手間をかけるより、自分で作った方がはやいでしょう。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング