
xy 面上の曲線C: ζ(t) =(x(t) , y(t))=(R(t - sin t) , R(1 - cos t))
(0 ≤ t ≤ 2π) を考える.
(1) 曲線C はサイクロイドと呼ばれる. 媒介変数t の幾何的意味を明らかにしつつ, 曲線C を図示せよ.
(2) 原点O から媒介変数の値がt となる点までの弧長s(t) を求めよ.
(3) 弧長s(t) の逆関数t(s) を求め, サイクロイドC を弧長s で媒介変数表示せよ.
(4) 弧長パラメータs をもちいた曲率の定義に従い, サイクロイドC の曲率κ(s) を求めよ.
(5) 弧長パラメータを経由することなく, もとの媒介変数t で曲線C の曲率を求め, それが前小問の結果と一致することを確かめよ.
教えてください。
A 回答 (7件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
ANo.5の続き
(4)
ANo.5の参考URLの一番目より
曲率κ=±√{(d^2x/ds^2)^2 + (d^2y/ds^2)^2}
であるから
(3)より
t=2*arccos(1-(1/4)(s/R))
dt/ds=(1/2)(1/R)/√{1-(1-(s/(4R)))^2}=2/√(s(8R-s))
x=R(t-sin(t)),
dx/dt=R(1-cos(t))
y=R(1-cos(t))
dy/dt=Rsin(t)
dx/ds=(dx/dt)(dt/ds)=(1/4)(1/R)√(s(8R-s))
d^2x/ds^2=(1/4)(1/R)(4R-s)/√(s(8R-s))
(d^2x/ds^2)^2=(4R-s)^2/(s(8R-s)(16R^2))
dy/ds=(dy/dt)(dt/ds)=(4R-s)/(4R)
d^2y/ds^2=-1/(4R)
(d^2y/ds^2)^2=1/(16R^2)
κ=±√{(4R-s)^2/((16R^2)s(8R-s))+1/(16R^2)}
=±1/√(s(8R-s))
(途中計算は長くなるので一部省略しました。)
(5)はまた後で。
No.5
- 回答日時:
(1)
媒介変数t の幾何的意味
軌跡をxy座標で表すと
(x-tR)^2+(y-R)^2=R^2
これは
x軸上を転がる円(半径R、中心(tR,R)
の円であるから、tは円の中心のx座標が速度Rで移動する時間(媒介変数)を表すパラメータと言える。
(2)
s(t)=∫[0,t} √{(dx/dt)^2+(dy/dt)^2}dt
=R∫[0,t} √{(d(u-sin(u))/du)^2+(d(1-cos(u))/du)^2}du
=R∫[0,t} √{(1-cos(u))^2+(sin(u))^2}du
=R∫[0,t} √{2-2cos(u)}du
=R√2∫[0,t]√(1-cos(u))du
(途中省略)
=4R(1-cos(t/2))
(3)
t=2*arccos(1-(1/4)(s/R))
取り敢えずここまで。
余り、他力本願だけに頼らないで、自身でも自力でやって補足に書くようにしてください。その上で分からない所がでてきたら、わからない箇所を補足で質問してください。
(4),(5)
参考URL
ttp://21.xmbs.jp/shindou-263424-ch.php
ttp://sshmathgeom.private.coocan.jp/diffgeom/curvature.html
ttp://school.gifu-net.ed.jp/ena-hs/ssh/H23ssh/sc2/21111.pdf
ttp://hooktail.sub.jp/vectoranalysis/Curvature/
参考URL:http://21.xmbs.jp/shindou-263424-ch.php
No.4
- 回答日時:
(1)
「t の幾何的意味を明らかにしつつ」は、出題者の態度があまり良くないけれど、
サイクロイドであることがネタばらしされているから、できないことはないはず。
ベクトルで考えると見通しが良くなるので、
(x, y) = R(t, 1) - R(sin t, cos t) を睨んで、
これがサイクロイドと何の関係を持つか考えてみよう。
t の幾何的意味は、そこから見つかるはず。
(2)
これは、公式どおり、型どおり。
s(t) = ∫ √{ (dx/dt)^2 + (dy/dt)^2 } dt, ただし s(0) = 0.
計算する。
(3)
単に式変形。
(4)
これも、公式どおり、型どおり。
「弧長パラメータ s をもちいた曲率の定義」を知ってるかどうかだけかな。
κ = √{ (d^2x/ds^2)^2 + (d^2y/ds^2)^2 }.
(3)の結果、t が s で表されているから、
合成関数の微分によって、これが計算できる。
(5)
「弧長パラメータを経由することなく」も、やはり、出題者の態度が良くない。
http://hooktail.sub.jp/vectoranalysis/Curvature/
↑の図2のような幾何的考察をしてもよいが、
(4)とは逆に、(2)を使って公式から s を消去して求めても
いいのではないかと思う。(結果の一致は自明だが。)
No.3
- 回答日時:
媒介変数を弧長に直してから処理するのは微分幾何の基本的な手順なので
方法は教科書にそのまんま載ってるはず。
それを見ながら、見なくてもよくなるまで数をこなすべきなのがこの演習なんで、
人にやってもらったら意味ないです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の質問です。 0≦θ<2πのとき...
-
三角関数
-
cos(2/5)πの値は?
-
三角関数
-
複素数の問題について
-
複素数zはz^7=1かつz≠1を満たす...
-
1/ a + bcosx (a,b>0)の 不定積...
-
1+cosθをみると何か変形ができ...
-
cos2, cos3, cos4 の大小をくら...
-
e^2xのマクローリン展開を求め...
-
数3です。 第n項が次の式で表さ...
-
t×cos(wt)のラプラス変換が分...
-
高校数学 三角関数
-
加法定理の問題
-
数IIの三角関数の問題
-
|1+e^(-iωt)|の求め方
-
双極子モーメントの別解
-
cos二乗60°+sin30°
-
xcosθのxの偏微分を教えてくだ...
-
△ABCにおいてAB=4、BC=6、CA=5...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
数学の質問です。 0≦θ<2πのとき...
-
eの2πi乗は1になってしまうんで...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
【数学】コサインシータって何...
-
cos(2/5)πの値は?
-
加法定理の問題
-
cos2x=cosx ってなにを聞かれ...
-
三角関数で、
-
高校数学 三角関数
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
正十二面体の隣接面が成す角度?
-
加法定理
-
cos40°の値を求めています。
-
1/ a + bcosx (a,b>0)の 不定積...
-
楕円錐の、斜め断面は、円?
-
X5乗-1=0 の因数分解の仕方...
-
二等辺三角形においての余弦定...
-
数学の質問です。 円に内接する...
-
複素数平面の問題なのですが
おすすめ情報