
No.2ベストアンサー
- 回答日時:
この問題を見てt=cosxとおくのが有利と気づけないようでは実戦では頼りにならない。
理由
1)cosxのべき数が大きいから
2)dt/dx=-sinx ⇒ dt=-sinxdx これがそのまま使える。
つまり
∫cos^3xsinxdx=-∫t^3dt=-t^4/4+C=-cos^4x/4+C
なお、
-(1/4)cos^4X+C が (1/4)(1ーcos^4x)+C が同じ内容であることは
(1/4)(1ーcos^4x)+C=-(1/4)cos^4x+(1/4+C)=-(1/4)cos^4x+C'
と変形してみればよい。積分定数としてCとC'を区別するいわれはない。
なるほど!
詳しい解説ありがとうございました!
sinX=tの方は試しにやってみただけです笑
こんなに早く回答していただきありがとうございましたm(_ _)m
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学3の、定積分に関する質問です。 ∫上端e^2下端1{dx}/{x}という問題で、[log|x|] 1 2022/06/16 12:00
- 数学 t=tan(x/2)の置換積分について質問です。写真の問題では、(1)でt=tan(x/2)として、 6 2022/11/21 22:59
- 数学 【数学ⅲ】三角関数と合成関数の微分について 4 2022/07/07 21:44
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 t=cosx-sinxを合成するときマイナスでくくってsinの合成にしても問題ないですよね? またc 3 2023/03/05 15:40
- 数学 次の関数を微分せよ y=sin^4 x cos^4 x という問題で自分は積の微分法で微分して y' 3 2023/05/17 20:38
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 三角関数の問題なのですが、 0≦θ<2π のとき次の不等式を解け。 (1)sinx≧√3cosx ( 4 2023/05/18 00:15
- 高校 数3 面積 4 2022/05/11 12:37
- 数学 1/(4cos^2x+sin^2)で、 tan(x/2)=tとおいたとき、 sinx=2t/(1+t 2 2022/07/04 13:58
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
e^2xのマクローリン展開を求め...
-
1/ a + bcosx (a,b>0)の 不定積...
-
テーラー展開で数値を求めたい...
-
4cos【3】θ+2cos【2】θ-3cosθ-1...
-
数学についての質問です △ABCで...
-
∮sinθcos^2θを置換積分なしで =...
-
数3です。 第n項が次の式で表さ...
-
cos40°の値を求めています。
-
至急です!円に内接する四角形A...
-
正十二面体の隣接面が成す角度?
-
eの2πi乗は1になってしまうんで...
-
複素数zはz^7=1かつz≠1を満たす...
-
複素数の実部と虚部
-
不定積分
-
三角比
-
数列の極限でわからない問題
-
a>0とする。曲線y=sin2x(0≦x≦π...
-
cos(2/5)πの値は?
-
助変数tを用いて,サイクロイド...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の質問です。 0≦θ<2πのとき...
-
1+cosθをみると何か変形ができ...
-
cos(2/5)πの値は?
-
e^2xのマクローリン展開を求め...
-
eの2πi乗は1になってしまうんで...
-
高校数学 三角関数
-
三角関数
-
三角関数
-
複素数zはz^7=1かつz≠1を満たす...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
加法定理
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
角の三等分線の長さ
-
cos2x=cosx ってなにを聞かれ...
-
【数学】コサインシータって何...
-
1/ a + bcosx (a,b>0)の 不定積...
-
弓形の高さ
-
X5乗-1=0 の因数分解の仕方...
-
長方形窓の立体角投射率
-
複素数の問題について
おすすめ情報
同じなんですか?
同じになること証明する式を教えてもらえると助かります