A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
・対角線を引いてその長さをLとする。
・4辺は、a,b,c,d で既知とする。
・面積も既知でSとする。
・対角線で区切られた片側の面積をS1とする。するともう片方がSーS1となる。
・それぞれの三角形で、ヘロン公式を当てはめる。
https://ja.wikipedia.org/wiki/%E3%83%98%E3%83%AD …
・すると、Lがわかる。
・a,b,Lと、 L,c,d で2つの三角形ができ、余弦定理を使えば、2つの角度が求まる。
・別の2つの角度が知りたいなら、別の位置に対角線を引いて、同じことをやる。
No.1
- 回答日時:
4辺の長さをa、b、c、dとおき、面積をSとおく。
対角線を一本引きます。長さはxとおきます。
x^2=a^2+b^2-2abcosA=c^2+d^2-2cdcosB
もう一本の対角線の長さをyとおきます。
y^2=a^2+c^2-2accosC=b^2+d^2-2bdcosD
面積はabsinA+cdsinB=acsinC+bdsinD=S
対角線を引いた状態
cosA=(a^2+b^2-x^2)/2ab
sinA=√(((a^2+b^2-c^2-d^2+2cdcosB)/2ab)^2-1)
S=ab√(((a^2+b^2-c^2-d^2+2cdcosB)/2ab)^2-1)+cdsinB
S+cdsinB=ab√(((a^2+b^2-c^2-d^2+2cdcosB)/2ab)^2-1)
2乗して、
S^2+(cd)^2sin^2(B)+2cdSsinB
=S^2+(cd)^2(1-cos^2(B))+2cdSsinB
=(ab)^2((a^2+b^2-c^2-d^2+2cdcosB)/2ab)^2-1
=((a^2+b^2-c^2-d^2+2cdcosB)/2)^2-1
2cdSsinB=((a^2+b^2-c^2-d^2+2cdcosB)/2)^2-(1+S^2+(cd)^2(1-cos^2(B)))
(2cdS)^2*(1-cos^2(B))=(((a^2+b^2-c^2-d^2+2cdcosB)/2)^2-(1+S^2+(cd)^2(1-cos^2(B))))^2
このcosBに対する4次方程式を解いてarccosをとれば求められる。
他も全部求める?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
つい集めてしまうものはなんですか?
人間誰もは1つ「やたらこればかり集めてしまう」というものがあるもの。 あなたにとって、つい集めてしまうものはなんですか?
-
家・車以外で、人生で一番奮発した買い物
どんなものにお金をかけるかは人それぞれの価値観ですが、 誰もが一度は清水の舞台から飛び降りる覚悟で、ちょっと贅沢な買い物をしたことがあるはず。
-
初めて自分の家と他人の家が違う、と意識した時
子供の頃、友達の家に行くと「なんか自分の家と匂いが違うな?」って思いませんでしたか?
-
ちょっと先の未来クイズ第4問
11月ごろに発表される、2024年の「新語・流行語大賞」にノミネートされる言葉を書けるだけ書いてください。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
4辺の長さが分かっている四角形の対角線の長さを求める方法
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1から9までの番号をつけた9枚の...
-
エナメル線の電流容量 教えて...
-
0.1は10パーセントなら1.0は何...
-
高1です!次の問題を分かりやす...
-
周の長さは同じなのに面積が違...
-
数学Aです。大中小3個のさいこ...
-
大小2つのサイコロを投げる時...
-
大,中,小3個のさいころを投げ...
-
任意の置換は互換の積で表され...
-
一の読み方でかずと読むかなぁ?
-
台形の面積の求めかた
-
記号について2
-
数学の問題です 正の約数が28個...
-
MMULT関数がわかりません。
-
数学についての質問です。(2つ...
-
対角線の長さと角度が与えられ...
-
問題「m,nは整数とする。積mnが...
-
小学校5年生の算数
-
小学6年生算数の比の文章問題...
-
100!を素因数分解すると2^a、3...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1から9までの番号をつけた9枚の...
-
大小2つのサイコロを投げる時...
-
0.1は10パーセントなら1.0は何...
-
大,中,小3個のさいころを投げ...
-
数学Aです。大中小3個のさいこ...
-
周の長さは同じなのに面積が違...
-
エナメル線の電流容量 教えて...
-
高1です!次の問題を分かりやす...
-
40秒は何分?の計算式を教え...
-
周囲の長さが一定の二等辺三角...
-
測量図で、周囲の長さを算出す...
-
数学についての質問です。(2つ...
-
最大公約数や最小公倍数をだす...
-
デルタ関数について
-
一の読み方でかずと読むかなぁ?
-
高校数学です。0は全ての整数...
-
積付と積込の違い。
-
数列1.2.3.....nにおいて、n≧2...
-
2数の積の最小、最大の数を出す...
-
和が一定のときの積の値の変化...
おすすめ情報