No.2ベストアンサー
- 回答日時:
まずC2の正体を現す。
中心は、半径は。そして描く。
次にC1を何となく描いてみる。
半径と中心の座標を文字で書いて、C1の方程式を仮組みする。
接しているのだから、二つの円の中心を結ぶ線の長さ(2点間の距離)は、二つの円の半径の和に等しい。
C1と直線が接しているのだから、C1の中心と直線との距離、点と直線との距離が、C1の半径になるはず。
ここまでで、何ができなかったのか。
例えば、半径をr『と置いてみる』、C1の中心の座標を(t、s)『と置いてみる』、『置いてみてから考える』、ということができていたのか。
C1の中心の座標が、「中心がy軸上にある」ことからx座標が決まることに気がついていたか。
図を描いたか、何度も描きなおしたか。
円と円が接すると何が起こるか、描いた図から気がついたか。
円と直線が接するということはどういうことか判っていたか。
あれもこれもできない、手も足も出ない状態なら、上記のようにこの問題はやることが多いんで、もっと簡単な問題からしっかりやり直さないと、複雑な問題ばかりやっても時間ばかりかかる割に内容が身につかないでしょう。
図を描き、変数に置いたり、文章からx座標が決まることなどはわかったのですが、そこから先の部分に関して少し曖昧なままでこの問題に取り組んでいました。もう一度簡単なところから見直してみます。
詳しくありがとうございました。
No.3
- 回答日時:
下の図を見ると解り易い。
ベストアンサーを選ぶなら、No2 tekcycle様にする様に!!
この問題を代数だけで解こうとすると、結構複雑で面倒。
図を眺めると攻略法が見えてくる。
C2の中心はy軸上にあるから(0,Y0)と置く。
点(0,Y0)と直線x+√3 y=0の距離は公式を使って解く。
点(x0,y0)と直線ax+by+c=0の距離は|ax0+by0+c|/√(a²+b²)
距離=|a×0+√3y0+0|/√(1²+√3²)=√3y0/2=(√3/2)y0
これがC2の半径(下の図の青点線)。
C2の方程式はx²+(y-y0)²=(3/4)y0²となる。
C1とC2が外接しているから中心間距離は1+(√3/2)y0
中心間距離は下の図の赤点線
3平方定理より(1+(√3/2)y0)²=Y0²+1² (下の図の三角形)
(1+(√3/2)y0)の1はC1の半径、(√3/2)y0は青線の長さ
これを解くと
Y0=0,4√3 Y0=0だとC1と外接しないから
Y0=4√3
C2の方程式はx²+(y-y0)²=(3/4)y0² でY0=4√3を代入すると
x²+(y-4√3)²=36
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
「平成」を感じるもの
「昭和レトロ」に続いて「平成レトロ」なる言葉が流行しています。 皆さんはどのようなモノ・コトに「平成」を感じますか?
-
初めて自分の家と他人の家が違う、と意識した時
子供の頃、友達の家に行くと「なんか自分の家と匂いが違うな?」って思いませんでしたか?
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
高校三年生の合唱祭で何を歌いましたか?
大人になると大人数で合唱する機会ってないですよね。 思い出すと、高校三年生の合唱祭が最後でした。 そこで、みんなの思い出の合唱曲を知りたい!
-
2本の線に内接する円の中心を教えて下さい。
数学
-
円の作図
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急求む。 なぜ今までX,Yで求...
-
見慣れないタイプの楕円方程式...
-
第4問 座標平面上に3点 A(1, 1)...
-
数IIの問題教えてください
-
内心の軌跡
-
格子点
-
高校1年の化学です! 物質量の...
-
Merchantの最小抵抗説(微分?...
-
cosx/sinxの積分を教えてください
-
高1の数学でこんな感じに解の公...
-
e^iθの大きさ
-
位相差を時間に
-
画像のように、マイナスをsinの...
-
θが鈍角のとき、sinθ=4分の3の...
-
sinx-cosx=√2sinx(x-π/4) と解...
-
次の条件が成り立つような定数a...
-
なんでx軸と接しているところが...
-
求伏見稻荷大社和難波八阪神社...
-
恒等的に正しいとはどういう意...
-
高1 数学 sin cos tan の場所っ...
おすすめ情報