外出自粛中でも楽しく過ごす!QAまとめ>>

反転増幅回路の発振を防ぐ方法として、OPアンプ出力後(添付図参照)に抵抗を入れるとよいと聞いたのですが、なぜなのかわかりません。
詳しい方いらっしゃいましたら、ご回答よろしくお願いいたします。

「反転増幅回路の発振を防ぐ方法について」の質問画像

A 回答 (5件)

回答NO.2です。

 回答の補足です。OPアンプの出力へRxとCsを負荷した場合のOPアンプの出力OUTの出力抵抗の前からOUT端子までの伝達関数はsをラプラス演算子として以下の式で与えられます。

V(out)/V(1)={Cs*Rx*s+1}/{Cs*(r0+Rx)*s+1}  (1)


式(1)で分子のゼロωzは

   ωz=1/(Cs*Rx)   (2)

で与えられ、分母のポールωpは

   ωp=1/{Cs*(r0+Rx)} (3)

で与えられます。周波数特性は式(1)でs=jωとおいて得られますが、形としては低い周波数ではゲインは0dB。ポール周波数ωpでゲインはωzが十分高ければー3dB。この場合はωpにωzが近いのでー1dB程度の低下・そして位相も少し遅れる。
 周波数がさらに上がってゆくとゼロの影響でゲインは再び上昇してゆきます。位相も戻ってゆきます。この周波数特性をシミュレーション計算した結果を添付しておきます。

 黄色がRx=1uΩ、即ちショートした状態で太い線がゲインを細い点線が位相wp示してます。薄青色がRx=100Ωの時の特性です。

 Rxに100Ωを入れただけで位相の遅れは約-7.5°に抑えられているのが分かると思います。Rxがショートされた状態だとCsの影響がもろに出て位相は大きく遅れてゆく(周波数の上昇に伴って)のが分かります。

 これがRxを挿入する効果ということになります。
「反転増幅回路の発振を防ぐ方法について」の回答画像5
    • good
    • 0

記載ページを確認してみました。


「定本 OPアンプ回路の設計」では、p.91に「★負荷容量の補償法」があり、そこに説明があります。
OPアンプ出力後に抵抗を入れると負荷抵抗との分圧比で直流ゲインが不正確になりますが、それを正確な直流ゲインを確保するように補償しています。
「OPアンプによる実用回路設計」では、p.113に「■負荷容量による不安定動作の解消」があり、そこに説明があります。
そこでも正確な直流ゲインを確保するように補償しています。
「OPアンプ活用 成功のかぎ」では、p.202に「■出力に容量がつながれても発振しないようにする」があり、そこに説明があります。
OPアンプ出力後に抵抗を入れるだけの簡易対策と、正確な直流ゲインを確保する対策が載っています。

この手の本を1冊手元に置いておけば、ほとんどの問題に対応可能です。
    • good
    • 0

この方法は、OPアンプ出力に接続された負荷容量による発振防止です。


この本に載ってますが、この本の旧版が出版されたのは1973年だから、若い人は生まれる前で知らないと思います。
「定本 OPアンプ回路の設計」定価2,935円(税込)
http://www.amazon.co.jp/exec/obidos/ASIN/4789830 …
その後出たこの本「OPアンプによる実用回路設計」定価3,024円(税込)
http://www.amazon.co.jp/exec/obidos/ASIN/4789837 …
とか、この本「OPアンプ活用 成功のかぎ」定価3,240円(税込)
http://www.amazon.co.jp/exec/obidos/ASIN/4789842 …
にも載ってます。
OPアンプ回路の不安定要因としては、負荷容量だけでなく入力容量もあり、どの本にも対策が載っています。

「定本 OPアンプ回路の設計」は昔の本だから、想定した読者の基礎学力が高すぎて、今の低レベルな読者には合わないでしょう。
「OPアンプによる実用回路設計」は各種の回路が載っていて、回路集として使えます。
「OPアンプ活用 成功のかぎ」は、発振対策についても詳しく載っていて、若い人にはこれがお勧めです。
    • good
    • 0

この抵抗Rxは負荷に大きな容量Csが付いた時の発振防止に使用します。


この抵抗Rxがないと、OPアンプの出力抵抗r0とCsでポールができてしまいます。そのポールによって位相が回ってしまい、位相余裕が減って発振に至ります。
Rxを挿入するとOPアンプの出力にはRxとCsが直列になった負荷がつながることになる。そうすると負荷のCsはRxでr0と切り離される形となって位相の回りが抑えられます。
その結果、位相余裕が回復して発振が抑えられます。
 添付資料にこの様子をシミュレーションした結果を載せておきます。OPアンプはオープンループゲインが100dB、利得帯域積が1MHz、内部第一ポールが10Hz、第二ポールが517kHz、出力抵抗r0が30ΩのOPアンプをRs=Rf=10kΩの0dB反転アンプ構成にした状態で負荷の容量Csを10nF。そしてCsとOPアンプ出力とCsの間に抵抗Rxを挿入。
シミュレーションは入力信号v1を100Hzから50MHzまでAC解析を行いました。そしてRxは1uΩ(実質的にRxをショート)とRx=100Ωでシミュレーションを行ってます。
結果はRx=1uΩの時は黄色で示した周波数特性で下の段が抵抗RxとCsの接続点の信号V(out_res)で400kHzあたりにピークが出てます。これがRx=100Ωでは青色の特性になりますがピークが消えてるのが分かるかと思います。
シミュレーション結果の上の段は非反転入力INVと出力OUT間の伝達特性の周波数特性になります。青色のRX=100Ω時の特性で位相の回りが抑えられてるのが分かると思います。
「反転増幅回路の発振を防ぐ方法について」の回答画像2
    • good
    • 0

長い間OPアンプの回路設計や製作(試作)をやってきましたが(NHK図書からはOPアンプ回路の解説書も出しています)、OPアンプの発振防止に出力に抵抗を入れるとよいという話は聞きはじめです。

発振防止には、まずは電源に良質のパスコンを入れることから始まります。あとは配線の引き回しなどによって生じるストレイキャパシタンスを減らすことでしょうね。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qボルテージフォロワが発振しないようにするにはどうしたら良いですか?

帯域の大きなオペアンプを使ってボルテージフォロワ回路を組んだ場合で、
被測定対象の容量が大きな場合など
どうしても発振してしまう場合どうすれば良いのでしょうか?
ボルテージフォロワの帯域を下げるにはどうしたら良いのか教えて頂けますでしょうか?
http://focus.tij.co.jp/jp/lit/an/jaja130/jaja130.pdf
このページに一応解説がなされているのですが、出来る限り入力インピーダンスを下げずに発振を抑えたいので、
6ページにある3.3の方法がもっとも有効だということになるのでしょうか?
ボルテージフォロワの発振を抑えるというか単にローパスフィルタで見えなくしているだけのように思うのですが、
これで最良の方法なのでしょうか?

Aベストアンサー

最もよく使われている方法は、ボルテージフォロワと容量負荷の
間を小さい抵抗(10Ωとか)で分離するやりかたです。この場合
入れた抵抗R1のせいで出力電圧が減衰するので、この抵抗の後から
負帰還をかけます。(R2経由)

もしC1やR2がないと、抵抗R1と負荷C2によるLPFで位相が遅れ、
さらに発振しやすくなってしまうので、添付の図のように高い
周波数はOPアンプから直に帰還されるようにします。(C1経路)

これで安定にはなりますが、全体としての高周波特性が悪化
します。出力に抵抗を直列に入れた時点で、OPは容量負荷を
ドライブすることを放棄したようなもので、さらに高い周波数は
負荷を無視して帰還しているのですから。

どうしても容量負荷自体に対して、高い周波数までフォロワとして
働いて欲しい場合は、これはドライブ能力を増すしかありません。
負荷容量で位相が遅れるのが発振の原因ですから、位相が遅れない
ようにアンプの出力抵抗を下げるしかない訳です。

なお、CR直列回路を負荷に入れる(6ページ3.3の方法)は必ず
発振が止まるという方法ではありません。高周波で負荷が純粋な
容量に見えるよりは、抵抗成分も並列になっていて位相の遅れが
制限されることで安定になる、という狙いですので、容量負荷が
重いときはあまり効きません。

ただ、LPFで発振を見えなくしているといったインチキでは
ありません。ちゃんと帰還ループ一巡での位相を考えた方法です。

最もよく使われている方法は、ボルテージフォロワと容量負荷の
間を小さい抵抗(10Ωとか)で分離するやりかたです。この場合
入れた抵抗R1のせいで出力電圧が減衰するので、この抵抗の後から
負帰還をかけます。(R2経由)

もしC1やR2がないと、抵抗R1と負荷C2によるLPFで位相が遅れ、
さらに発振しやすくなってしまうので、添付の図のように高い
周波数はOPアンプから直に帰還されるようにします。(C1経路)

これで安定にはなりますが、全体としての高周波特性が悪化
します。出力に抵抗を直列に入れた...続きを読む

Qオペアンプのばらつきでおきる発振理由について

オペアンプを使った基本的な電流電圧変換の回路の発振について教えてください。
(+入力側はグランド、-入力側に電流入力と抵抗を返してネガティブフィードバックさせています)

最初は普通に動いていた回路だったのですが、オペアンプを交換したら発振すしてしまいました。

オペアンプはまったく同じシリーズのもので、違いは特性のばらつきのみです。
違うリールのものなので、おそらくロットが違います。
オペアンプ周辺のRやCはそのままにしており、オペアンプが変わることで発振したりしなかったりするのですが、これは、オペアンプのどの特性のばらつきが影響しているのでしょうか?
オフセット?増幅度?
どなたか、オペアンプのばらつきにより発振の有無が発生する理由を教えていただけないでしょうか?

Aベストアンサー

I/V変換に限ったことではないと思いますが、AMPなんてものは、動作自体がゆとりのあるものかギリギリなものかなんて紙一重です。そんな条件の中、例えばオープンループゲインが10%変わるなんて十分有り得るでしょうし、内部の位相補償コンデンサだって10%ぐらいすぐ変わるでしょう。ばらつきでの動作を補償できる程ゆとりを持ったTYP設計を行うか、昔で言う軍事向けぐらいのばらつきのものを用いるか、どちらかですね。
そもそもI/Vってのは「発振しやすいもの」と考えて良い回路構成です。当方も何度も苦しめられたので、よくわかります。
質問の答えですが、「AC特性」と一言で済ませられると思います。ゲインが上がればゼロクロスは伸びますし、ゼロクロスがあがる要因は、何もゲインだけでは無いですし。複合的な「AC特性」と言わざるを得ません。
アナログは10年で一人前と言われる領域です。是非頑張ってくださいませ!

Qオペアンプ 発振防止

テキストを読むと、ゲイン余裕や位相余裕等の説明があります。
しかし肝心な発振対策はあまり見られません。余裕関連の測定を各自やってケースバイケースで勝手にやれという事でしょうか?発振対策に使えるテキストや文献があれば紹介して下さい。

Aベストアンサー

発振現象は,帰還経路があり,
その周波数帯域でプラスのゲインを持ち,
発振の位相条件がそろったときに起きる現象です.

一般的には帰還経路があり広帯域でプラスのゲインを持つと,
どこかで位相条件を満たすため発振をします.
広帯域アンプなどは注意が必要です.

具体的な発振対策としては
1)帰還経路を遮断する.
2)ゲインを下げる.
3)位相をいじる.

という順ではないかと思います.

まずは,帰還しないようにすれば,発振は止まります.
しかし,どうしても帰還経路を止めることができない場合は
発振周波数付近でのゲインを下げ,発振を止めることもあります.
これは,所望の帯域でのゲインも下がってしまうことがあるので,
あまり使いたくないですが,帰還経路をどうにもできない場合には
この方法を使うこともあります.
最後ですが,このもの(1品)が何とかすればいい場合は,
帰還経路にCやLなどを入れて位相をずらすことも考えられます.
しかし,位相をずらしても,広帯域でプラスゲインを持っていると
ほかの周波数で発振条件を満たしてしまう場合が多く難しい
対処方法になります.

発振現象は,帰還経路があり,
その周波数帯域でプラスのゲインを持ち,
発振の位相条件がそろったときに起きる現象です.

一般的には帰還経路があり広帯域でプラスのゲインを持つと,
どこかで位相条件を満たすため発振をします.
広帯域アンプなどは注意が必要です.

具体的な発振対策としては
1)帰還経路を遮断する.
2)ゲインを下げる.
3)位相をいじる.

という順ではないかと思います.

まずは,帰還しないようにすれば,発振は止まります.
しかし,どうしても帰還経路を止めることができない場合は
発振周波数付近で...続きを読む

Qオペアンプのボルテージフォロアの帰還抵抗

オペアンプでボルテージフォロアを組む場合、教科書ではVoutと-入力を短絡すればいいと書いてあるのですが、あるアンプの回路をみたら短絡ではなく10kオームになっていました。
先輩に聞いたら発振防止のために入れるらしいですが、なぜ10kオームなのかという理由はわかりませんでした。
抵抗を入れるのはどういう場合なのでしょうか。
抵抗を入れる場合は定数をどうやって決めるのでしょうか。
教えてください。

Aベストアンサー

短絡でなく10kオームとなっているのは、+入力から見た信号源インピーダンスと-入力から見た信号源インピーダンスの差を小さくし、出力のDCオフセットとDCドリフトを小さくするためでしょう(バイアス電流の影響)。

ただし、ここに10kオームを入れると、高い周波数でのフィードバック位相が-入力の容量の影響で遅れますので、発振しやすくなります。
この場合、10kオームとパラレルにコンデンサを入れることもあります(位相補償)。

Q閉ループゲイン 開ループゲイン

オペアンプの閉ループゲイン、開ループゲインとはそもそも何なのでしょうか?
根本的なとこがわかりません。
どなたかよろしくお願いします。

Aベストアンサー

[図6.1-41]を見てください。
これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi0613.html

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60dB)のフィドバックをかけたとすると、利得は20dB(40dB)になりますが、利得一定の周波数幅がうんと広くなることにお気づきでしょうか?
これが閉ループゲインです。

一般に、オペアンプの開ループゲインは100dB以上ありますが、これを開ループで使うことは滅多にありません。
周波数特性が問題にならないコンパレータのときくらいのものです。

参考URL:http://my1.interlink.or.jp/~md0858/series4/densi0613.html

[図6.1-41]を見てください。
これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi0613.html

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60...続きを読む

QOP-アンプの発振に関することに関して教えて下さい。

OPアンプは高周波帯において、出力側で位相が遅れた成分が入力側に戻ることで、ポジティブフィードバックの状態になり発振してしまう。帰還容量を増やすことによって位相余裕を増やしてやることで
発振しないようにすることが出来る。
ということに関してなのですが疑問があります。

・帰還容量を増やすということは高周波側の成分の帰還量を増やすということに相当するわけですが、
となると帰還容量を増やすと逆に発振を促進することにはならないのでしょうか?

・コンデンサの特性として位相を送らせるというものがありますが、となるとコンデンサを経由して帰還してきた成分は90°遅れており、位相余裕が90°ほどもある周波数帯まで、入力と同じ位相になってしまい、やはり発振を促進してしまうのではないのでしょうか?

・そもそもコンデンサで入力側と出力側を繋ぐということは、帰還量だけではなく、オペアンプを経由せずに素通りしていく成分も増えることになり、この成分はオープンループゲインが0以下の周波数帯でもゲイン0で通過するのではないのでしょうか?


この3点いくら考えて調べても答えが見つかりませんでした。
どなたか詳しい方がおられたら教えて下さい。

よろしくお願い致します。

OPアンプは高周波帯において、出力側で位相が遅れた成分が入力側に戻ることで、ポジティブフィードバックの状態になり発振してしまう。帰還容量を増やすことによって位相余裕を増やしてやることで
発振しないようにすることが出来る。
ということに関してなのですが疑問があります。

・帰還容量を増やすということは高周波側の成分の帰還量を増やすということに相当するわけですが、
となると帰還容量を増やすと逆に発振を促進することにはならないのでしょうか?

・コンデンサの特性として位相を送らせ...続きを読む

Aベストアンサー

先ず前提として,外部ゲインが0dB(つまり100%負帰還)まで安定な電圧帰還型のOPアンプを対象にしているとゆうことを理解することが重要です.
外部ゲイン0dBでは不安定な電圧帰還型OPアンプ(例えばLF357とか)や,電流帰還型OPアンプでは,帰還容量を付けると発振します.

また,帰還量にはレベルと位相があり,帰還容量を付けると高周波側の成分の帰還量が増えますが,位相は進みます.

>・帰還容量を増やす・・・発振を促進することにはならないのでしょうか?
位相が進むために安定に100%負帰還がかけられます.

>・コンデンサの特性として位相を送らせると・・・発振を促進してしまうのではないのでしょうか?
位相は進みます.

>・そもそもコンデンサで入力側と出力側を繋ぐ・・・ゲイン0で通過するのではないのでしょうか?
先ず,OPアンプの入力でクランプされると共に,OPアンプ内部の寄生ダイオードで整流され,直流オフセット電圧の増加という形になります(ここの1ページ).
http://documentation.renesas.com/jpn/products/linear/rjj03d0644_ha17358a.pdf
実験してみればすぐわかりますが,ゲイン0での通過は観測されません.

発振の問題は伝達関数を求めて見ればすぐわかります.
OPアンプの特性や浮遊容量を含めた伝達関数は,シグナル・フロー・グラフを使えばあっという間に求まります.
http://www.mogami.com/paper/sparameter/sparameter-01.html
ここの「5.2 メイソンの非接触ループ法」です.

先ず前提として,外部ゲインが0dB(つまり100%負帰還)まで安定な電圧帰還型のOPアンプを対象にしているとゆうことを理解することが重要です.
外部ゲイン0dBでは不安定な電圧帰還型OPアンプ(例えばLF357とか)や,電流帰還型OPアンプでは,帰還容量を付けると発振します.

また,帰還量にはレベルと位相があり,帰還容量を付けると高周波側の成分の帰還量が増えますが,位相は進みます.

>・帰還容量を増やす・・・発振を促進することにはならないのでしょうか?
位相が進むために安定に100%負帰還が...続きを読む

Qオペアンプ反転増幅回路で+入力に繋がれた抵抗は何?

独学でアナログ回路の勉強をしている素人です。

オペアンプの反転増幅回路の基本回路だと、+入力はGNDに落としていますよね。
しかしネットで検索すると、抵抗を介してGNDへ落とす回路を見かけました。
この抵抗の役割がわからず、困っています。

実際の回路の画像を添付しました。
添付画像の赤い矢印のところの抵抗のことですが、これはどのような役割をしているのでしょうか。
一段目のオペアンプのように抵抗を介さずGNDに落としてはいけないのでしょうか。

自分が購入したアナログ回路の設計入門書にも(入門だからか)載っていませんし、自分なりに調べましたが、この抵抗の役割だけどうしても分かりません。

どうかご教授お願い出来ませんでしょうか。
宜しくお願いします。

Aベストアンサー

この抵抗は、オペアンプの入力端子に流れるバイアス電流による、出力電圧の理想値からのずれを抑えるものです。tadysさんと同じ主旨ですが、定量的には、理想値からのずれ(DC電圧のずれ)は、添付図の式(A)の Ib がかかった項になります。

添付図は、オペアンプを使った2入力の加算回路です。Vin1 と Vin2 という2つの入力電圧を加算し、正負を反転した電圧が出力電圧(Vout)になるものですが、オペアンプの入力端子に流れるバイアス電流 Ib が無視できない場合、添付図の式(A)のように、Ib のかかっている項が誤差になります。R4 がない場合は、式(A)で R4 = 0 としたものになるので
Vout = -[ (R3/R1)*Vin1 + (R3/R2)*Vin2 + Ib*R3 ]
となって Ib*R3 が誤差になります。ところが、R4 を入れて、添付図の最後の式のようにR4の抵抗値を調整すると、Ibの項が 0 となって、オペアンプの入力端子に流れるバイアス電流による誤差をなくすことができます。

ご質問の回路では、R1 = 20kΩ、R2 = 20kΩ、R3 = 20kΩ なので、バイアス電流による誤差をなくすには、本来は R4 = 1/( 1/20e3 + 1/20e3 + 1/20e3 ) = 6.67e3 Ω= 6.67kΩ にすべきです。

オペアンプの入力端子に流れるバイアス電流による誤差は、バイアス電流 Ib が大きいほど大きくなるので、FET入力のオペアンプやCMOSオペアンプのように、Ib がpA未満と非常に小さい場合には、添付図の式(A)の Ib 自身が非常に小さいので、R4 を入れなくても(R4を短絡しても)誤差は小さくなります。R4 を入れて誤差を小さくしたほうがいいのは、一般的に、Ib が 100nA以上のオペアンプを使った場合になります。

LM358の場合は Ib が最大100nAと、無視できる境界線あたりですが、ご質問の回路は交流だけを加算するもの(出力コンデンサで直流がカットされている)なので、バイアス電流によってVoutに直流的な誤差電圧が少々乗っていても問題ありません(オペアンプにLM358を使うのならR4はなくてもいい)。

なお、添付図では、オペアンプの反転入力端子(-)に流れるバイアス電流も非反転入力端子(+)に流れるバイアス電流も同じ Ib としていますが、現実には、この電流にはわずかな違いがあります(その違いを入力オフセット電流といいます)。しかし、この違いは一般に小さいので無視できることが多いです。

この抵抗は、オペアンプの入力端子に流れるバイアス電流による、出力電圧の理想値からのずれを抑えるものです。tadysさんと同じ主旨ですが、定量的には、理想値からのずれ(DC電圧のずれ)は、添付図の式(A)の Ib がかかった項になります。

添付図は、オペアンプを使った2入力の加算回路です。Vin1 と Vin2 という2つの入力電圧を加算し、正負を反転した電圧が出力電圧(Vout)になるものですが、オペアンプの入力端子に流れるバイアス電流 Ib が無視できない場合、添付図の式(A)のように、Ib のかかってい...続きを読む

Qボルテージフォロワの役割がよく分かりません。

ボルテージフォロワは、電流が流れることで寄生抵抗によって電圧値が低下しないようにするために、回路の入力段及び出力段に入れるものであると思いますが、
これを入れるのと入れないのでは具体的にどのような違いが表れるのでしょうか?

オペアンプを使った回路では通常、電流は流れないはずですので、このようなものは必要ないように思うのですが、どのような場合に必要になるのでしょうか?

Aベストアンサー

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗にほぼ等しい。この抵抗の大きさはさほど大きくできない。)
非反転増幅回路を用いると、入力インピーダンスを大きくすることができます(非反転増幅回路の入力インピーダンスは非反転入力と反転入力のピン間インピーダンスにほぼ等しく、かなり大きな値になる。)が、増幅率が1よりも大きくなってしまいます。
これを元の信号のレベルに下げるために抵抗で分圧してしまうと、分圧に使用した抵抗分出力インピーダンスが増えてしまいます。これでは何のためにオペアンプを入れて電流の影響を減らしたの意味がなくなってしまいます。
元の電圧のまま、次の段に受け渡すにはボルテージフォロワがよいということになります。


次に、#1の補足に対して。
>反転増幅回路と非反転増幅回路は単に反転するかしないかの違いだと思っていたのですが、
>それ以外に特性が異なるのですか?
これは、上でも述べていますが、反転増幅回路と非反転増幅回路は、増幅回路の入力インピーダンスが異なります。
信号源の出力インピーダンスが大きく、電流が流れると電圧が変化してしまような用途では入力インピーダンスを高くできる非反転増幅が有利です。

>・出力インピーダンスとは出力端子とグラウンド間のインピーダンスだと思っていたのですが、それでいくと分圧するということは
>出力インピーダンスを下げることになるのではないのでしょうか?
違います。出力インピーダンスとは信号を発生させている元と入力先との間のインピーダンスを意味します。
出力インピーダンスは信号源から流れる電流による電圧降下の大きさを決定付けます。
オペアンプを使った回路での出力インピーダンスは、理想的な状態ですはゼロになります。
分圧用の抵抗を入れてしまうと、分圧に使用した抵抗のうち信号源と入力先に入っている抵抗分が出力インピーダンスとして寄与していしまいます。

>・それと非反転増幅回路の出力を抵抗などで分圧することで増幅率を1以上にするデメリットを教えて下さい。
これは、何かの勘違いですね。
非反転増幅回路で増幅率を1よりも大きくしたいのなら分圧などする必要はありません。
非反転増幅で増幅率を1以下にしたい場合は、何らかの方法で信号を減衰させる必要があります。ここで分圧を使うのはあまり好ましいことではないということです。

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗...続きを読む

Q非反転増幅回路の特性

OPアンプを用いて、非反転増幅回路(5倍)をつくり、実験をしたら、次のような結果が得られました。

電圧に対する特性:電圧を上げていくと増幅率が下がる。
周波数に対する特性:周波数を上げていくと、20kHzぐらいから入力電圧と出力電圧の波に位相のずれが生じ始め、50kHzぐらいから増幅率が下がり始めた。

この結果から、高電圧、高周波数範囲では増幅器としての役割を果たさないということは解りましたが、なぜそうなるのかというところが解りません。わかるかた、どうか教えてください。

Aベストアンサー

OPアンプの出力電圧の振幅は電源電圧以上にはできませんから、入力電圧が高くなると当然振り切れてしまいます。OPアンプの種類にもよりますが+-12Vで使ったとしてエミッターフォロワータイプなら約+-9.5V程度、コレクターフォロワータイプやFET出力段になっているものならほぼ電源電圧まで振れます。

増幅率が5倍なら、その1/5、約2V程度で振り切れてしまい、単純に出力電圧/入力電圧の式で計算すると振り切れて以降は、出力電圧は上がりませんから、増幅度は低下します。もし電源電圧より高い出力電圧を必要とするなら、もっと高い電源電圧の増幅器を後ろにくっつけるか、交流ならトランスを使って帰還ループもそこから取る必要があります。

ちなみに最大出力振幅は、エミッターフォロワで、電源電圧-2.5Vです。

それから周波数特性ですが、周波数が高くなってくるとICの中のトランジスタの中にあるPN接合面に生じるわずかな静電容量(要するにコンデンサ)の影響が出て来ます。例えば100pFの接合面容量があったとして、50KHzでおよそ30KΩの抵抗と同じになります。これがトランジスタのベースエミッタ間の容量ならば、入力に並列に30kΩの抵抗が入ったのと同じになり、入力インピーダンスや帰還抵抗の計算に対する影響が無視できなくなります。周波数が高くなればなるほどこういう影響は派手になり、やがては増幅器として機能しなくなります。おおまかで、原因はこれだけじゃないけど、大体こんなお話だと思います。ですから、高周波用や高速動作のものはICの段階からそれなりの作り方をします。

OPアンプの出力電圧の振幅は電源電圧以上にはできませんから、入力電圧が高くなると当然振り切れてしまいます。OPアンプの種類にもよりますが+-12Vで使ったとしてエミッターフォロワータイプなら約+-9.5V程度、コレクターフォロワータイプやFET出力段になっているものならほぼ電源電圧まで振れます。

増幅率が5倍なら、その1/5、約2V程度で振り切れてしまい、単純に出力電圧/入力電圧の式で計算すると振り切れて以降は、出力電圧は上がりませんから、増幅度は低下します。もし電源電...続きを読む

Qオペアンプに使用するパスコンは何故0.1μFなのでしょう?

いろいろ本を見てもパスコンは0.1μFをつければいい。という内容が多く、
何故パスコンの容量が0.1μFがいいかというのがわかりません。
計算式とかがあるのでしょうか?

Aベストアンサー

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけです。
(従って、当然のことですが、10MHz~1GHzを扱うデバイスでは0.1μFでは不十分で、0.01μF~10pFといったキャパシタを並列に入れる必要が出てきます)

では低域の問題はどうでしょうか?
0.1μFは1MHzで2Ω、100kHzでは20Ωとなり、そろそろお役御免です。
この辺りからは、電源側に入れた、より大容量のキャパシタが守備を受け持つことになります。
(この「連携を考えることが、パスコン設計の重要なポイント」です)

ここで考えなければならないのが、この大容量キャパシタと0.1μFセラコンとの距離です。
10MHzは波長30mです。
したがって、(これも大ざっぱな言い方ですが)この1/4λの1/10、すなわち75cmくらいまでは、回路インピーダンスを問題にしなくてよいと考えます。

「1/40」はひとつの目安で、人によって違うと思いますが、経験上、大体これくらいを見ておけば、あまり問題になることはありません。
厳密には、実際に回路を動作させ、て異常が出ればパスコン容量を変えてみる、といった
手法をとります。

上記URLは、横軸目盛りがはっきりしていないので、お詫びにいくつかのパスコンに関するURLを貼っておきます。
ご参考にしてください。
http://www.rohm.co.jp/en/capacitor/what7-j.html
http://www.cqpub.co.jp/toragi/TRBN/contents/2004/tr0409/0409swpw.pdf
http://www.murata.co.jp/articles/ta0463.html

参考URL:http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけ...続きを読む


人気Q&Aランキング