外出自粛中でも楽しく過ごす!QAまとめ>>

基本的な反転増幅回路における周波数特性が右下がりになる理由を理論的に説明したいのですが、回路にコンデンサが使われていないので、カットオフ周波数が求められなくて困っています。
オペアンプは751です。
右下がりになる理由はカットオフとオペアンプの周波数特性によるものですよね?



   

このQ&Aに関連する最新のQ&A

A 回答 (3件)

式が少し違うところがありますが、Fcutは合っています。


V(t)=Asin(2πft)  Aは最大値(片振幅)
dV/dt=2πfAcos(2πft)  t=0のとき、[dV/dt]max=2πfA=SR
よって、f=SR/2πA (あなたの式には2が無い)
SR=0.5[V/μs] A=8[Vp0] とすると、f=0.5/2/3.14/8=0.020[MHz]=20[kHz] (あなたの計算結果と一致)
以上はあなたに従って最初から8Vで計算しましたが、電源電圧(例えば15V)で上限値を求めておくことも必要だと思います。
    • good
    • 2
この回答へのお礼

分かりやすい解説ありがとうございます。
大変参考になりました。

お礼日時:2007/06/01 22:02

>右下がりになる理由はカットオフとオペアンプの周波数特性によるものですよね?



 オペアンプは負帰還をかけて使うと思いますので、オペアンプのオープンゲイン周波数特性をその負帰還の利得でカットしたイメージになります。厳密に言うとカットオフ付近では負帰還量が微妙に変ります。
    • good
    • 0

上限周波数はオペアンプのスルーレート(slew rate)から計算出来ます。

(例:751は2V/μs)
正弦波の位相0度における勾配<スルーレート です。
出力電圧と上限周波数は反比例します。計算で確かめて下さい。
    • good
    • 0
この回答へのお礼

早速の回答ありがとございます。
使用するオペアンプですが751ではなくて741でした。
すいませんでした。

カットオフ周波数の式は
fc=SR/Vo*π
で合ってますか?

例えば
出力電圧が8Vで741のスルーレートは0.5V/μsより
fc≒20kHzになりました。
20kHzを越えるとオペアンプが入力信号の応答に鈍くなってはじめは緩やかに右下がりになるってことですか?
高校で物理やらずに大学で急にやることになって
知識が乏しいので見当違いなことを言ってたらすいません。

お礼日時:2007/06/01 19:22

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q反転増幅器の周波数特性

入力電圧V1=300mV、R1=10kΩ、Rf=100kΩの反転増幅回路で周波数を100Hzから200kHzまで徐々に変化させていくと、10kHz以降から位相差が生じて、出力電圧、利得が減少しはじめました。どうしてこんなことが起きるのでしょうか?その根拠がわかりません・・・
そしてなぜ10kHzから生じたのかという根拠もわかりません。
どなたかご回答の程よろしくお願いします。

Aベストアンサー

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増幅回路における周波数特性が右下がりになる理由を理論的に説明したいのですが、回路にコンデンサが使われていないので、カットオフ周波数が求められなくて困っています。オペアンプは751です。右下がりになる理由はカットオフとオペアンプの周波数特性によるものですよね? http://okwave.jp/qa3048059.html

非反転増幅、反転増幅の回路実験を行ったのですが、1kHzや100kHz を入力すると、約10倍の増幅が確認できたのに対し、1MHzを入力した場合、約1.2倍となりほとんど増幅が確認できませんでした。 これはなぜでしょうか http://okwave.jp/qa3055112.html

反転増幅回路と非反転増幅回路に周波数特性に違いがあるらしいのですがそれがどういった違いなのかわかりません。わかる方いらっしゃいましたら教えてください。 http://okwave.jp/qa4078817.html

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増...続きを読む

QオペアンプのGB積

オペアンプの周波数特性にてGB積を求めたいのですが、求め方がよくわかりません。
GB積=電圧利得A(倍率)×周波数f(Hz)
で求めたのですが、それぞれがばらばらの値で、一定になりません。
色々調べるとGBは一定の値をとる。となっています。

良く分かりません。よろしくお願いします。

Aベストアンサー

「×GEIN」→「○GAIN」でスペルミスです.寝ぼけていてゴメン.
お詫びに図で説明を;
図はオーディオ用のuPC4570の電圧利得対周波数特性です.
http://www.necel.com/nesdis/image/G10528JJ8V0DS00.pdf
赤線は電圧利得 Av=80dB(1万倍)のときで周波数 f≒1.3kHzとなり,GB積≒1.3*10^07.
青線は電圧利得 Av=40dB(100倍)のときで周波数 f≒120kHzとなり,GB積≒1.2*10^07.
黒線は電圧利得 Av=0dB(1倍)のときで周波数 f≒7MHzとなり,GB積≒7*10^06.
Av=0dBの周波数ゼロクロス周波数と呼び,データシートに記載があります.

とゆうように,適当な電圧利得を選び,そこから水平に線を引いて電圧利得対周波数特性との交点を求め,その時の周波数と電圧利得を掛ければGB積が算出できます.

Q反転増幅回路の周波数特性について

こんにちは。
反転増幅回路の周波数特性について調べてるんですが、実験を行って数値を求めました。
そしてグラフでまとめたんですが、ある所まで大体一定になってて、それ以降は徐々に下がっていきました。
なぜある所まで一定だったのにそれ以降は下降したんでしょうか?
その下降し始める地点の周波数から何か特別なんですか?

Aベストアンサー

反転でも非反転でも、それ特有の特性は無く、同じです。
周波数特性を支配するのは、低域であれば信号進行方向に直列のコンデンサ、高域であれば並列のコンデンサです。特に高域のコンデンサは、使っている部品だけではなく、等価的に存在する浮遊コンデンサも見逃せません。
これらは、等価回路を作図して、数式で簡単に解析できます。

実験目的は、一般的には、机上解析(設計)を実物で確認することです。結果の予測無しの実験は危険です(間違いに気が付かず時間の浪費だけ)。
実験回路を提供した書物に実験結果を予測する解説があるはずなので、よく読みましょう。

周波数を上げていくと、増幅回路の出力レベルは、ゆるい山か、その山上がつぶれた台形になるはずです。
その折れ曲がり点は予測された周波数でしたか? 傾斜部分の傾斜具合は?
その確認が実験であり、製作が正しくできたかの確認です。

もし、何も言わずに作って実験、という指導者の下でのことならば、悲しい…

Q遮断周波数のゲインがなぜ-3dBとなるのか?

私が知っている遮断周波数の知識は・・・
遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
<遮断周波数の定義>
出力電力が入力電力の1/2となる周波数を指す。
電力は電圧の2乗に比例するので
Vout / Vin = 1 / √2
となるので
ゲインG=20log( 1 / √2 )=-3dB
となる。

ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
となるのでしょうか?
定義として見るにしてもなぜこう定義するのか
ご存じの方いらっしゃいましたら教えて下さい。

Aベストアンサー

>ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
>となるのでしょうか?
>定義として見るにしてもなぜこう定義するのか

端的に言えば、
"通過するエネルギー"<"遮断されるエネルギー"
"通過するエネルギー">"遮断されるエネルギー"
が、変わる境目だからです。

>遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
これは、少々誤解を招く表現です。
減衰自体は"遮断周波数"に至る前から始まります。(-3dBに至る前に、-2dBとか、-1dBになる周波数があります)

Q高域遮断周波数

高域遮断周波数というものは、電圧振幅を1/√2にする周波数であっていますか?


教えてください。

Aベストアンサー

なんか勘違いが起きない様に。。。

20log(1/√2)=-3dBです。
通常、周波数特性を伝達関数で表す為、電圧振幅を1/√2にするのと-3dB振幅が下がるのは同じ事です。
※電力で考えると10log(Pout/Pin)です。P=VI=V^2/R=I^2Rだから、電流振幅と電圧振幅に分けた場合は2乗をlogの前に出して20log・・・となるのです。

ちなみに、この√2と言うのは実効値を連想しそうですが、違います。元々、電力を基準に式が考えられているので、電力をが半分になる周波数と言う意味合いがあります。
この基準はひどく曖昧なもので、例えばQ曲線があった時に、尖鋭度を表すQ値がありますが、別名半値幅です。ピークの半分の値になる周波数特性の幅を見ているのです。突き詰めるといろんな意味があるのですが、アナログ的に変化する曲線を記述するには、結構適当に決める場合が多いです。ちょっと詳しい事はわからないですが、おそらくQ値を決める時の基準を流用して、半分の値になる時と決めたものであると思われます。グラフが折れ曲がる点でもありますからね。(何も基準がなかったら1/10でも良いですからね。)

なんか勘違いが起きない様に。。。

20log(1/√2)=-3dBです。
通常、周波数特性を伝達関数で表す為、電圧振幅を1/√2にするのと-3dB振幅が下がるのは同じ事です。
※電力で考えると10log(Pout/Pin)です。P=VI=V^2/R=I^2Rだから、電流振幅と電圧振幅に分けた場合は2乗をlogの前に出して20log・・・となるのです。

ちなみに、この√2と言うのは実効値を連想しそうですが、違います。元々、電力を基準に式が考えられているので、電力をが半分になる周波数と言う意味合いがあります。
この基準はひどく曖昧なもので、例え...続きを読む

Qオペアンプのカットオフ周波数の計算式

オペアンプのカットオフ周波数の計算式でf1=1/2π*R1*C1 f2=1/2π*R2*C2と本に書かれていたのですが
バンドパスフィルターの計算式とは違っています
f1 = [ √{ ( C1 + C2 )^2*R1^2 + 4*C1*C2*R1*R2 } - ( C1 + C2 )*R1 ]/( 4*π*C1*C2*R1*R2 )
f2 = [ √{ ( C1 + C2 )^2*R1^2 + 4*C1*C2*R1*R2 } + ( C1 + C2 )*R1 ]/( 4*π*C1*C2*R1*R2 )
この計算式の違いが解りません
またQ値は1次フィルターでも大きくできるのか、ハイパスフィルターでもQは発生するか、説明書では2次フィルターのローパスフィルターでのQ値しか説明がありませんでしたので教えて下さい

Aベストアンサー

問題のBPF(http://sanwa.okwave.jp/qa3924451.html)は「多重帰還型BPF」というわれものの変形で、入力アッテネータがないものになります。
多重帰還型BPFは、Qを大きくしようとすると(狭い周波数帯だけ通過させるようにすると)、中心周波数 f0 での利得を非常に大きくしなければならないので、出力が飽和しやすいという欠点があります。そのため資料[1], [2] にあるように、R1 と R2 からなるアッテネータ(減衰器)で、入力信号のレベルを一旦落とすという構成が用いられます。問題の回路は、[2] の回路で R2→∞ としたものになりますので、1/R2 の項をゼロとして計算してみてください。

本に書かれている「f1=1/2π*R1*C1、2=1/2π*R2*C2」という式は、単純なCR回路によるLPF [2] とHPF [3] のカットオフ周波数です(OPアンプを使った微分回路と積分回路のカットオフ周波数も同じ式になります)。問題のBPFは1つの回路でHPFとLPFを構成しているので4個の素子(C1, C2, R1, R2)がお互いに影響し合います。そのためカットオフ周波数の式が複雑になります。f1 と f2 の式から
   f2 - f1 = ( 1 + C1/C2 )/( 2*π*C1*R2 )
   1/f1 - 1/f2 = 2*π*C2*R1*( 1 + C1/C2 )
となりますが、Q が小さく、f2 >> f1 ならば、
   f2 - f1 ≒ f2
   1/f1 - 1/f2 ≒ 1/f1
と近似できるので
   f2 ≒ ( 1 + C1/C2 )/( 2*π*C1*R2 )
   f1 ≒ 1/{ 2*π*C2*R1*( 1 + C1/C2 ) }
と近似されます。さらに、C1 << C2 であれば(R1 = R2 のときはそうなる)、C1/C2 は1に比べて無視できるのでこれをゼロとすれば
   f2 ≒ 1/( 2*π*C1*R2 )
   f1 ≒ 1/( 2*π*C2*R1 )
となります。本に書かれている式と違うのは、C1 やC2 の番号のつけかたが異なるからです。

>Q値は1次フィルターでも大きくできるのか、ハイパスフィルターでもQは発生するか
CRだけの1次フィルタでのQ値(カットオフ周波数での利得/通過域の利得)は1/√2 (=0.707)と一定ですのでカットオフ周波数近傍で利得が持ち上がることはありません。問題のBPFでも2つのカットオフ周波数( f1, f2 ) が充分離れている場合には、1次のLPFと1次のHPFの特性をつなげたものになるので、LPHやHPFとしてのQ値は1/√2 です。ややこしいですが、問題のBPFでは、BPFのQ値は変えられます(BPFのQ値は中心周波数/通過域の幅という意味です)。

[1] 多重帰還型BPF(1) http://www.cqpub.co.jp/toragi/TRBN/trsample/2003/tr0306/0306an18.pdf
[2] 多重帰還型BPF(2)  http://sim.okawa-denshi.jp/OPtazyuBakeisan.htm
[3] CR型1次LPF http://sim.okawa-denshi.jp/CRlowkeisan.htm
[4] CR型1次HPF http://sim.okawa-denshi.jp/CRhikeisan.htm

問題のBPF(http://sanwa.okwave.jp/qa3924451.html)は「多重帰還型BPF」というわれものの変形で、入力アッテネータがないものになります。
多重帰還型BPFは、Qを大きくしようとすると(狭い周波数帯だけ通過させるようにすると)、中心周波数 f0 での利得を非常に大きくしなければならないので、出力が飽和しやすいという欠点があります。そのため資料[1], [2] にあるように、R1 と R2 からなるアッテネータ(減衰器)で、入力信号のレベルを一旦落とすという構成が用いられます。問題の回路は、[2] の回路で ...続きを読む

Q非反転増幅回路の特性

OPアンプを用いて、非反転増幅回路(5倍)をつくり、実験をしたら、次のような結果が得られました。

電圧に対する特性:電圧を上げていくと増幅率が下がる。
周波数に対する特性:周波数を上げていくと、20kHzぐらいから入力電圧と出力電圧の波に位相のずれが生じ始め、50kHzぐらいから増幅率が下がり始めた。

この結果から、高電圧、高周波数範囲では増幅器としての役割を果たさないということは解りましたが、なぜそうなるのかというところが解りません。わかるかた、どうか教えてください。

Aベストアンサー

OPアンプの出力電圧の振幅は電源電圧以上にはできませんから、入力電圧が高くなると当然振り切れてしまいます。OPアンプの種類にもよりますが+-12Vで使ったとしてエミッターフォロワータイプなら約+-9.5V程度、コレクターフォロワータイプやFET出力段になっているものならほぼ電源電圧まで振れます。

増幅率が5倍なら、その1/5、約2V程度で振り切れてしまい、単純に出力電圧/入力電圧の式で計算すると振り切れて以降は、出力電圧は上がりませんから、増幅度は低下します。もし電源電圧より高い出力電圧を必要とするなら、もっと高い電源電圧の増幅器を後ろにくっつけるか、交流ならトランスを使って帰還ループもそこから取る必要があります。

ちなみに最大出力振幅は、エミッターフォロワで、電源電圧-2.5Vです。

それから周波数特性ですが、周波数が高くなってくるとICの中のトランジスタの中にあるPN接合面に生じるわずかな静電容量(要するにコンデンサ)の影響が出て来ます。例えば100pFの接合面容量があったとして、50KHzでおよそ30KΩの抵抗と同じになります。これがトランジスタのベースエミッタ間の容量ならば、入力に並列に30kΩの抵抗が入ったのと同じになり、入力インピーダンスや帰還抵抗の計算に対する影響が無視できなくなります。周波数が高くなればなるほどこういう影響は派手になり、やがては増幅器として機能しなくなります。おおまかで、原因はこれだけじゃないけど、大体こんなお話だと思います。ですから、高周波用や高速動作のものはICの段階からそれなりの作り方をします。

OPアンプの出力電圧の振幅は電源電圧以上にはできませんから、入力電圧が高くなると当然振り切れてしまいます。OPアンプの種類にもよりますが+-12Vで使ったとしてエミッターフォロワータイプなら約+-9.5V程度、コレクターフォロワータイプやFET出力段になっているものならほぼ電源電圧まで振れます。

増幅率が5倍なら、その1/5、約2V程度で振り切れてしまい、単純に出力電圧/入力電圧の式で計算すると振り切れて以降は、出力電圧は上がりませんから、増幅度は低下します。もし電源電...続きを読む

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Qオペアンプの位相差についてです。 周波数をあげていくと 高周波になるにつれて 位相がズレました。 こ

オペアンプの位相差についてです。
周波数をあげていくと
高周波になるにつれて
位相がズレました。
これは何故なのでしょうか?
高周波、周期が原因で
位相差が発生しているのですか?

Aベストアンサー

回答No.2にグラフが示されているように、低周波領域でオペアンプのゲインがフラットな部分は位相遅れがほとんど出ません。ですがゲインがー3dBほど落ちたところで位相は45度遅れ、それより先の6dB/octのロールオフ部分(周波数とともにゲインが直線的に落ちている傾斜部分)は位相が90度遅れます。
それよりもっと先のロールオフが急傾斜(12dB/oct)になっている部分では位相遅れが180度に近づいてきます。理論的にこうなります。

Qオペアンプを用いたフィルタ回路のカットオフ周波数の定義

題のとおりなのですが、ある参考書を読んでいたら、出ていたのですがいまいちよくわかりません。
おねがいします。

Aベストアンサー

>オペアンプを用いたフィルタ回路のカットオフ周波数の定義は何ですか?という事をしりたいのですが・・・

オペアンプを用いたフィルタ回路でカットオフ周波数が出てくるのは、LPF( Low Pass Filter = ローパスフィルタ = 低い周波数成分だけ通過させるフィルタ )と、HPF( High Pass Filter = ハイパスフィルタ = 高い周波数成分だけ通過させるフィルタ )の2種類だけです。それぞれのフィルタでのカットオフ周波数の意味は以下の通りです。

【 LPFの場合 】
入力信号の振幅を Vin、フィルタを通った後の出力信号の振幅を Vout としたとき、入力信号が直流の場合
   Vout/Vin = A
であったとします(入力に ある電圧の直流をかけると、フィルタの出力にはそのA倍の電圧が出てくる)。入力信号が直流でなく交流の場合、このフィルタは低い周波数にか通さない、逆に言えば、高い周波数の信号を小さくする性質があるので、入力信号の周波数が高くなるほど、フィルタを通った出力信号は弱まります。入力信号の周波数を大きくしていったとき
   Vout/Vin = A/√2
となるような周波数をカットオフ周波数と言います。大雑把に言うと、カットオフ周波数が fc [Hz] のLPFは、直流から周波数が fc [Hz] の範囲の信号に対しては、増幅率が A ですが、それより周波数が高くなると、増幅率が A より小さくなって減衰させる働きがあります。つまり、LPF は高い周波数成分をカットする働きがあり、どの周波数以上をカットするかという周波数のことをカットオフ周波数と言います。

【 HPFの場合 】
入力信号の振幅を Vin、フィルタを通った後の出力信号の振幅を Vout としたとき、非常に高い周波数の入力信号に対して
   Vout/Vin = A
であったとします。入力信号の周波数をそれより低くしていくと、このフィルタは高い周波数しか通さない、つまり、低い周波数の信号を小さくする性質があるので、入力信号の周波数が低くなるほど、フィルタを通った出力信号は弱まります。入力信号の周波数を小さくしていったとき
   Vout/Vin = A/√2
となるような周波数をカットオフ周波数と言います。大雑把に言うと、カットオフ周波数が fc [Hz] のHPFは、周波数が fc [Hz] より高い信号に対しては、増幅率が A ですが、それより周波数が低くなると、増幅率が A より小さくなって減衰させる働きがあります。つまり、HPF は低い周波数成分をカットする働きがあり、どの周波数以下をカットするかという周波数のことをカットオフ周波数と言います(HPF は直流信号を通しません)。

>オペアンプを用いたフィルタ回路のカットオフ周波数の定義は何ですか?という事をしりたいのですが・・・

オペアンプを用いたフィルタ回路でカットオフ周波数が出てくるのは、LPF( Low Pass Filter = ローパスフィルタ = 低い周波数成分だけ通過させるフィルタ )と、HPF( High Pass Filter = ハイパスフィルタ = 高い周波数成分だけ通過させるフィルタ )の2種類だけです。それぞれのフィルタでのカットオフ周波数の意味は以下の通りです。

【 LPFの場合 】
入力信号の振幅を Vin、フィルタを通っ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング