
No.5ベストアンサー
- 回答日時:
まず、関数は偶関数なので-パイからパイの積分は2倍の0からパイの積分になります。
∫[-パイ,パイ]|sin nx|dx=2∫[0,パイ]|sin nx|dx、これをx=y/nと変数変換すると
=(2/n)∫[0,nパイ]|sin y|dyとなり、ここで
∫[0,nパイ]|sin y|dy=(0からパイの積分)+(パイから2パイの積分)+(2パイから3パイの積分)・・・
+(n-1パイからnパイの積分)となりますが、]|sin (y+パイ)=|-sin y|=|sin y|から
|sin y|は周期パイの関数なので、上の各区間でその関数のグラフはすべて0からパイの区間の
グラフとおなじになります。だから上の各区間の積分も∫[0,パイ]|sin y|dy=∫[0,パイ]sin ydy=2に
等しく、求める積分は(2/n)×2n=4です。
No.4
- 回答日時:
ついでに、一つの山の面積も、nと反比例するんでしょうし。
直感的には一発で解が得られそう。
積分を計算すると、コサインが出てくるんでしょう。
n=1のとき、コサインの値の1から0を引くような物、一つの山の更に半分が4つある。
n=2だと、山の数が倍になるけれど、山の横幅が半分になるから、直感的には面積は一緒。
No.3
- 回答日時:
y=|sinnx|のグラフを描きましたか?
n=1のときはどんな様子で、n=2の時はどんな様子でしょうか。n=3だと。
同じ図形の面積ですから、「都合の良いところの何倍」なんて感じで出せますよね。
No.2
- 回答日時:
nx = y とおくと
dy/dx = n
dx = (1/n)dy
x: -パイ ~ パイ
↓
y: -nパイ ~ nパイ
よって
∫[-パイ,パイ]|sin(nx)|dx
= ∫[-nパイ,nパイ]|sin(y)|(1/n)dy
= (1/n)∫[-nパイ,nパイ]|sin(y)|dy ①
このうち m を正の整数として、
2m =n (n が偶数のとき)
2m+1 =n (n が奇数のとき)
とすると
(1) y が[ 偶数パイ~ 奇数パイ ] のときは、sin(y) ≧ 0 なので、たとえば
∫[(2m-2)パイ,(2m-1)パイ]|sin(y)|dy
= ∫[(2m-2)パイ,(2m-1)パイ][ sin(y) ]dy ←|sin(y)|=sin(y) として絶対値を外す
= [ -cos(y)][(2m-2)パイ,(2m-1)パイ]
= -[ (-1) - 1 ]
= 2 ②
(2) y が[ 奇数パイ~ 偶数パイ ] のときは、sin(y) ≦ 0 なので、たとえば
∫[(2m-1)パイ,2mパイ]|sin(y)|dy
= ∫[(2m-1)パイ,2mパイ][ -sin(y) ]dy ←|sin(y)|=-sin(y) として絶対値を外す
= [ cos(y)][(2m-1)パイ,2mパイ]
= 1 - (-1)
= 2 ③
(3) ①は周期関数で、[-nパイ,nパイ] の間に (1) を n 回、(2) を n 回繰り返すので、
∫[-パイ,パイ]|sin(nx)|dx
= (1/n)(2n + 2n)
= 4
No.1
- 回答日時:
偶関数だから
∫[-π,π]|sin nx|dx
=2∫[0,π]sin nxdx
=2[(-cos nx)/n]_[0,π]
=2[±1+1]/n
=4/n (nが奇数)
0 (nが偶数)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
正弦波の「長さ」
-
面積
-
数学の関数極限の問題を教えて...
-
数学の問題教えてください
-
楕円の問題です^^
-
数学の質問ですがよろしくお願...
-
極大値、極小値
-
三角関数
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
cos{θ-(3π/2)}が-sinθになるの...
-
三角関数の「1/3倍角の公式...
-
ベクトル解析
-
【至急】数llの三角関数の合成...
-
円環の体積 断面積が半円の内側...
-
線形変換の証明と問題
-
lim[x→0]tanx=xとなる理由は?
-
f(x)=|sinx| のフーリエ展開が...
-
台形波のフーリエ級数
-
パソコンで行列はどう書けばいい?
-
お得な事が嫌いな人は、いませ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の関数極限の問題を教えて...
-
cos{θ-(3π/2)}が-sinθになるの...
-
【至急】数llの三角関数の合成...
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
日本数学オリンピック2000年予...
-
離散フーリエ変換(DFT)の実数...
-
面積
-
sinθ―√3cosθ=a(θ+α)の形にした...
-
正弦波の「長さ」
-
lim[x→0]tanx=xとなる理由は?
-
数学の問題教えてください
-
sin1,sin2,sin3,sin4の大小を比...
-
三角関数について教えてくださ...
-
sinθ=-1/√2がθ=5/4π、7/4πと...
-
f(x)=|sinx| のフーリエ展開が...
-
台形波のフーリエ級数
-
0≦x<2πの範囲で関数y=-√3sin...
-
三角関数の合成
-
ベクトル場の面積分に関してです
-
高校数学
おすすめ情報