ウォーターサーバーとコーヒーマシンが一体化した画期的マシン >>

溶媒であるCDCl3のCのピークが78ppm付近で3重線として現れるのはどうしてなのでしょうか?
NMRに詳しい方、教えてください。
お願いします。

A 回答 (1件)

スピン結合の 2nI+1の法則というのはご存知ですか?


多重度(一次の分裂パターン)は
あらゆる核で2nI+1で表されます。
(n: 隣接している等価なスピン結合をしたプロトン数
I: スピン)

重水素(D)はスピンが1なので
CDCl3の場合は、
n=1、I=1なので、多重度が 2 + 1 = 3 になるわけですね。
なので、13Cの吸収線は
トリプレット(強度1:1:1)に分裂します。
    • good
    • 2
この回答へのお礼

「2nI+1則」かぁ・・・知らなかったです。
それならば他の重水素化溶媒を用いた場合に現れる多重線の説明もできますね。
どうもありがとうございました!

お礼日時:2004/08/05 15:17

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QNMRが(>o<)…

 とにかくNMRがわけ分かりません。例えば、どういうときに、ダブレットになるのか、ダブルダブレットになるのかとか、なんか2Hとか6Hとか書いてあってそれが何なのかとか、とにかく基本的なことから理解できてません。
 なにかNMRを理解するためのアドバイスや基本的な事項をなんでもいいから教えて下さい。又はNMRに関して詳しく書いてあるサイトを紹介してくださっても結構です。

Aベストアンサー

NMRとは核磁気共鳴(Nuclear Magnetic Resonance)の略で、特定の原子核に磁場の存在下に電磁波を当てると、その核の環境に応じた周波数(共鳴周波数)で電磁波の吸収が起こる現象のことです。

とこんな堅苦しいことを書いても理解しづらいと思うので、1H-NMRについて簡単に説明すると、
まず測定した物質内に水素原子が存在すると、その環境に応じて吸収(ピーク)が現れます。
同じ環境の水素(CH3の3つの水素など)はすべて同じ位置に出るし、違う環境の水素は違う位置に出ます。
この位置というのは、標準物質との差で表します。
共鳴周波数の標準物質からのずれを当てている磁場の周波数で割ったもので、だいたい100万分の1から10万分の1程度になることが多いのでppm単位で表します。標準物質をテトラメチルシラン(TMS)にするとほとんどの有機物の水素は0~10ppmの範囲内に出ます。
違う環境の水素同士が立体的に近い位置にある場合、相互作用をします。これをカップリングと呼びます。ビシナル(隣り合う炭素についた水素の関係)の場合が多いですが、ジェミナル(同じ炭素についた水素同士)でもお互いの環境が違う場合はカップリングするし、それ以外でもカップリングする場合がありますが、詳しくは割愛します。
カップリングした場合、その水素のピークは相手の等価な水素の数+1の本数に分裂します。
例えば酢酸エチル(CH3-CO-O-CH2-CH3)の場合、右端のメチルの水素は隣にメチレンがあるのでカップリングし、メチレン水素は2個なので3本に分裂します。
メチレンの水素も同じように右端のメチルとカップリングするわけですから、4本に分裂します。
カップリングする相手の水素が1個の場合は2本でこれをダブレットと呼びます。3本はトリプレット、4本はカルテット。
上の酢酸エチルの左端のメチルは隣の炭素に水素がついてないのでカップリングせず1本(シングレット)に出ます。
n-プロパン(CH3-CH2-CH3)の場合、中央のメチレンは隣に水素が6個あり、それが全て等価なので7本(セプテット)になります。
カップリングする水素が2個あってその2個が等価でない場合は両方とダブレットを形成するのでダブルダブレットとなります。
例を挙げると、CHX2-CHY-CHZ2のようなものです。
この物質の中央の炭素についた水素は、等価でない両端の水素とそれぞれカップリングし、ダブルダブレットになります。

次に1H-NMRはピークの面積がその水素の数に比例します。測定時はそのピークの積分比を取ることにより、そのピークの水素の数を求めることが出来ます。酢酸エチル(CH3-CO-O-CH2-CH3)では左から順に3:2:3の比になります。
この等価な水素の数を2Hとか3Hとかと書きます。

それから上でカップリングについて書きましたが、分裂する幅を結合定数と呼び、その幅の周波数(Hz)で表します。
互いにカップリングしている水素同士の結合定数は同じ値になります。

結構長くなってしまいましたが、これは基本の基本でしかないので、機器分析の本などを読んで詳しく勉強した方がいいと思います。

参考URL:http://www.agr.hokudai.ac.jp/ms-nmr/assign/index.htm

NMRとは核磁気共鳴(Nuclear Magnetic Resonance)の略で、特定の原子核に磁場の存在下に電磁波を当てると、その核の環境に応じた周波数(共鳴周波数)で電磁波の吸収が起こる現象のことです。

とこんな堅苦しいことを書いても理解しづらいと思うので、1H-NMRについて簡単に説明すると、
まず測定した物質内に水素原子が存在すると、その環境に応じて吸収(ピーク)が現れます。
同じ環境の水素(CH3の3つの水素など)はすべて同じ位置に出るし、違う環境の水素は違う位置に出ます。
この位置というのは、...続きを読む

Q有機化合物_NMRがとれない理由

ある有機化合物を合成し、プロトンNMRを重溶媒で測定しようとしたところ、溶媒のピークと水のピークだけ現れました。前駆体までは問題なく重クロで測定できたのですが。

化合物のピークが取れないのは溶解度が低いからでしょうか?溶媒に色が付くぐらいには溶けるのですが、重溶媒1mlに対し、0.1mgぐらいしか溶けていなかったかもしれません。

重クロでとれず、重DMSOでも取れませんでした。合成を確認するためにできれば測定したいと思っています。
このような場合、みなさんならどうしますか。
1.他の重溶媒を試す
2.固体NMR
その他、いい測定法があれば教えていただけるとありがたいです。

指導教員に固体NMRが使えるかどうか聞いたら、”君は固体NMRについて何も知らないからそういう質問をするんだ”というような事を云われました。固体でプロトンNMRを測るのは無理なのでしょうか?研究室の流れとして、多核では固体でとっているようなのですが。

よろしくおねがいします。

Aベストアンサー

装置の使用環境が分かりませんので、全く当てはまらない場合はご容赦ください。

溶液と固体に分けてコメントしてみますね。少しでもお役に立てば良いですが。

1.溶液測定
 まず溶液測定の前提として、とにかく試料を溶解させることが必須です。構造や分子量に
 よっても色々ですが、通常の場合プロトンならば0.1%くらいの濃度があれば測定可能と
 思ってください。溶液のプロトンにこだわるならば、この濃度を稼げる重溶媒を何とか探
 しましょう。でも、間違っても重溶媒で溶解性試験はやらないでくださいね。

 もうひとつ、ご質問の末文にある「多核」を利用する方法があります。具体的にはカーボ
 ン核で見る方法です。軽溶媒に溶解してロックをかけずに測定します。最近の装置はマグ
 ネットが安定していますので、この方法でも大きな問題無くデータが得られると思います。
 但しオペレーションが若干特殊なので、装置を管理している方にご相談されるのが良いで
 しょう。

2.固体測定
 結論は余りオススメしません。

 指導教員の方が「測定原理」「オペレーション」「解析」のどれを指して「何も知らない」
 とおっしゃっているかは気になりますが…

 固体測定の場合は、残念ながら期待するようなデータは簡単には得られません。どうして
 も溶液測定が実施できない場合に再考されてはいかがですか。


 長くなってごめんなさい。参考になれば幸いです。

装置の使用環境が分かりませんので、全く当てはまらない場合はご容赦ください。

溶液と固体に分けてコメントしてみますね。少しでもお役に立てば良いですが。

1.溶液測定
 まず溶液測定の前提として、とにかく試料を溶解させることが必須です。構造や分子量に
 よっても色々ですが、通常の場合プロトンならば0.1%くらいの濃度があれば測定可能と
 思ってください。溶液のプロトンにこだわるならば、この濃度を稼げる重溶媒を何とか探
 しましょう。でも、間違っても重溶媒で溶解性試験はやらないでくださ...続きを読む

QNMRではどうして重溶媒を使うの?

NMRの測定の際、何故重溶媒を使うのでしょうか?

かなり、あほっぽい質問ですみません

Aベストアンサー

 これは yoisho さんが回答されている様に,普通の溶媒(重水素化されていない溶媒)ではそのシグナルが強く出てしまい,目的の化合物のシグナルがノイズに埋もれてしまう程小さくなってしまうからです。

 例えば,分子量 300 の化合物 30 mg を 1 ml の重クロロフォルムに溶かして測定するとしましょう。この化合物は 30/300 = 0.1 mmol です。一方,溶媒の重クロロフォルム(CDCl3)は分子量 120 で密度 1.5 ですから,1 ml 中には 1x1.5x1000/120 = 12.5 mmol 存在します。

 この様に,化合物に対して溶媒分子は 100 倍以上存在するため,重化溶媒を使用しないと,化合物のシグナルは溶媒シグナルの1%程度になり,ほとんどノイズに隠れてしまいます。


 なお,kumanoyu さんがお書きのロックシグナルですが,これは上記の理由で重化溶媒を使用する事から溶媒のDのシグナルをロックに使用する様になったものです。実際,マニュアルでシムを上げる(分解能調整を行なう)場合には,ロックをかけなくても測定できます(勿論,四塩化炭素でも)。

 さらに余談ですが,昔のCW型NMR装置ではTMSのシグナルをロックに使い,マニュアルで分解能調整を行なっていました。

 これは yoisho さんが回答されている様に,普通の溶媒(重水素化されていない溶媒)ではそのシグナルが強く出てしまい,目的の化合物のシグナルがノイズに埋もれてしまう程小さくなってしまうからです。

 例えば,分子量 300 の化合物 30 mg を 1 ml の重クロロフォルムに溶かして測定するとしましょう。この化合物は 30/300 = 0.1 mmol です。一方,溶媒の重クロロフォルム(CDCl3)は分子量 120 で密度 1.5 ですから,1 ml 中には 1x1.5x1000/120 = 12.5 mmol 存在します。

 この様に,化合物に対して...続きを読む

Qスピン量子数

NMRでの測定で、スピン量子数が1/2のものがよく使われますが、このスピン量子数の計算方法はいったいどうやるのでしょうか??
一番わからないのが質量数17の酸素原子のスピン量子数が5/2になることです。

説明よろしくお願いします。

Aベストアンサー

私も詳しい計算ルールは知らないのですけど、原子核の殻模型を使えば計算できるみたいですね。

http://www2.kutl.kyushu-u.ac.jp/seminar/MicroWorld3/3Part2/3P26/shell_model.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/shell.html
(1番目の日本語のページでは、0s1/2, 0p3/2,...という番号付けになっていますが、2番目の英語のページのように、1s1/2, 1p3/2,...と番号付けすることのほうが多いと思います)

質量数16の酸素原子核は陽子8個、中性子8個ですので、エネルギー準位の低いほうから順に詰めていくと、それぞれs1/2に2個、p3/2に4個、p1/2に2個入って、閉殻になりますから、原子核の角運動量はゼロになります。

質量数17の酸素原子核は陽子8個、中性子9個で、質量数16の酸素原子核に中性子を1個付け加えたものですから、この中性子はd5/2に入って、原子核の全角運動量量子数、つまり原子核のスピン量子数、は5/2になります。

ANo.2の方の回答にある経験則も、この殻模型できれいに説明できます。原子の殻模型で使うフント則とは反対に、原子殻の殻模型では、スピン量子数をできるだけ小さくするように核子の角運動量を合成するようです。

私も詳しい計算ルールは知らないのですけど、原子核の殻模型を使えば計算できるみたいですね。

http://www2.kutl.kyushu-u.ac.jp/seminar/MicroWorld3/3Part2/3P26/shell_model.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/shell.html
(1番目の日本語のページでは、0s1/2, 0p3/2,...という番号付けになっていますが、2番目の英語のページのように、1s1/2, 1p3/2,...と番号付けすることのほうが多いと思います)

質量数16の酸素原子核は陽子8個、中性子8個ですので、エネルギー準位の...続きを読む

Q英語論文:ChemDrawでの「・」や「℃」、「△」などの記号入力に付いて

過去に類似の質問があることは承知なのですが、どうも上手く入力できないのであえてここに質問させて頂きます。

今度、RSCのジャーナルに電子投稿しようと思うのですが、
図の作成でChemDrawを使ってます。
RSCの規定でフォントはTimes New RomanとArial、Symbolしか使えないのですが、図のキャプションを書く時に、例えば、水和物を表す時の中点「・」や温度「℃」、図中のプロット「△、▲、○、●、□、■、×」などは、どのように入力すればよいのでしょうか?

Wordなら、「挿入」⇒「記号と特殊文字」でArialなどのフォントで入力可能なのですが、それをChemDrawにカットアンドペーストすると違う文字になってしまいます。

ちなみにOSはWindows2000で
ChemDrawのバージョンは6です。

Aベストアンサー

後から Julius さんのコメントを読んでハッとしましたが,入力自体はできたんですよね?

Julius さんのケースはちょっと良く分かりませんが,mogula さんの Word からのコピペでうまくいかない理由は,記号をクリップボードにコピー際,Word が自動的に日本語全角フォントのテキストに変換してしまうからです。この機能は,文字をメモ帳などに貼り付けるは便利なのですが…。

この問題は「ChemDraw 側が Word のリッチテキスト形式を認識する」という形でも解決するのが最も妥当なのですが,何せ日本版の Word でしか起こらない問題であるため,代理店が強く要求するなどしない限り,永久に修正されないでしょう。

ちなみに,このテキスト変換の様子は「クリップボードビューア」というプログラムで見ることが出来ます(クリップボードビューアがない場合は Win の CD からのインストールが必要)。

あと,WinME までなら文字コード表にある文字ならすべて ChemDraw に入力できるはずですが,Win2000 以降の Unicode フォントで新たに定義された文字は,ChemDraw6 にはどう足掻いても貼り付けることは出来ないと思います。ChemDraw6 は Unicode 未対応だと思いますので…(Julius さんのご回答から推測するに ChemDraw6 以降は Unicode 対応?)。

やはり,特殊な図を載せる,一番簡単確実な方法は,No.3 で書いた「アウトライン化」だと思います。

もしご参考になりましたら。

後から Julius さんのコメントを読んでハッとしましたが,入力自体はできたんですよね?

Julius さんのケースはちょっと良く分かりませんが,mogula さんの Word からのコピペでうまくいかない理由は,記号をクリップボードにコピー際,Word が自動的に日本語全角フォントのテキストに変換してしまうからです。この機能は,文字をメモ帳などに貼り付けるは便利なのですが…。

この問題は「ChemDraw 側が Word のリッチテキスト形式を認識する」という形でも解決するのが最も妥当なのですが,何せ日本版の Wor...続きを読む

QTLCスポットのUV発色について

TLCを使った実験で、展開後、スポットを確認するために、紫外線ランプを当てますよね。私の実験室では、長波366nm、短波254nmのランプを使います。

そのときの発色の原理について、質問があります。

TLCプレート(silica gel 60 F254)を使っているのですが、プレート上に展開された物質が、長波でも短波でも反応する場合、長波では紫外線を当てるとその物質が蛍光発色し、短波では、その部分だけ消光します。
共役二重結合がある場合、紫外線に反応すると理解していたのですが、長波と短波を当てたときに、長波だけ反応する物質、短波だけ反応する物質があり,なぜこのような結果になるのか不思議です。
自分なりに考えてみたところ、「短波で消光するのは、シリカゲルに蛍光物質がぬってあって、その上に展開した物質が覆うように存在するからであり、別に共役二重結合を持たなくてもプレート上に展開された物質はすべて確認できるのかな。長波で反応する場合は、共役二重結合によって紫外線を吸収した後、別の波長として放出し、蛍光物質として検出できるのかな。」と思いましたが、よくわかりません。
どなたか、ご存知の方、教えてはいただけないでしょうか。よろしくお願いいたします。

TLCを使った実験で、展開後、スポットを確認するために、紫外線ランプを当てますよね。私の実験室では、長波366nm、短波254nmのランプを使います。

そのときの発色の原理について、質問があります。

TLCプレート(silica gel 60 F254)を使っているのですが、プレート上に展開された物質が、長波でも短波でも反応する場合、長波では紫外線を当てるとその物質が蛍光発色し、短波では、その部分だけ消光します。
共役二重結合がある場合、紫外線に反応すると理解していたのですが、長波と短波を当てたときに...続きを読む

Aベストアンサー

共役二重結合のような電子が励起されやすい状態にある化合物は強いエネルギーを持った短波長の紫外線によって励起され発光ではなく熱となって基底状態へともどります。つまり紫外線を吸収するので見た目はその部分だけ消光します。当然全ての物質が吸収するわけではなく、展開後に溶媒を減圧したりして完全に乾かさなくてもUVで検出されないことからも分かります。長波長の紫外線で光る物質は長波長の波長で励起されて可視光を放つものです、エネルギーが弱いためにどんな物質でもというわけではありません。光る物質の多くは長い共役系を持っているなど弱いエネルギーでも励起できそうな物ばかりですよね。
ちなみにシリカゲルのUV-Visスペクトルを測定すると260nm以下あたりから吸収域を持っていることが分かります。

QDMFの1H-NMRのシグナルについて

「N,N-Dimethylformamide(DMF)をCDCl3に溶かした試料の1H-NMRを室温で測定すると、
8.0、3.0、2.9ppmのケミカルシフトに1:3:3のピークを与える」という文章があったのですが、
2つあるmethyl基のHが等価ではなかった、ということに疑問を感じました。
「アミド結合の構造上の特徴」が理由であるようなのですが、
共鳴構造くらいしか思いつかず、よく分かりません。
なぜ2本ではなく3本のピークが出るのか、教えていただけないでしょうか。

また、「温度を上げていくとシグナルが変化する」とあったのですが、
どのように変化するのか分かりません。
「温度可変NMR」という質問
http://oshiete1.goo.ne.jp/qa1838559.htmlを見ても
よく理解できませんでした。
こちらも教えていただけないでしょうか。
よろしくお願いします。

Aベストアンサー

共鳴構造のせいであってますよ。
窒素のローンペアからカルボニル基に電子が流れ込んだ極限構造の寄与が大きいため、Me2N(+)=CH-O(ー)のようなエノラート型構造に近づきます。これだと、アルケンと同じで、窒素上の二つのメチル基は非等価ですよね?

また、温度可変NMRで温度を上げていくと、二つのメチル基のシグナルはじょじょに広がり、ある温度で融合して一本となり、さらに温度を上げていくと通常の鋭い一本線となるでしょう。
上述したように、N-C間には二重結合性がありますが、これは完全な二重結合ではないため、十分な熱エネルギーを与えれば回転して異性化できます。
室温以下ではこの異性化はNMRのタイムスケールに比べて遅いため、NMRで観察する限り、あたかもDMFは上述した極限構造の形で止まっているかのように見えます。
しかし温度を上げてやると、N-C結合周りの回転は速まり、NMRでは両者がだんだん混じってしまって区別できなくなります。

そうですね、自転車や車のホイールのリムを考えてみましょうか。
止まっていたり、回転が遅いとリムは目で見えますね。
でも、回転が速くなると、目では追いきれなくなってしまいます。
(もっとも、このたとえだと、回転が速くなったときに全部が区別されなくなる、というのが説明できないけど(汗)

この現象はDMFに限らず、二つ(あるいはそれ以上)の構造の間でゆっくりとした構造変化が起こっている場合に観察できます。
条件は、相互変換のスピードがだいたい秒のオーダーであること。これはNMRの原理的な問題です。
それ以上に速い反応になると、より高速な分光法が必要です。
逆にもっと遅い反応となりますが、X線回折などで反応変化を追う、というおもしろい実験もあります。

共鳴構造のせいであってますよ。
窒素のローンペアからカルボニル基に電子が流れ込んだ極限構造の寄与が大きいため、Me2N(+)=CH-O(ー)のようなエノラート型構造に近づきます。これだと、アルケンと同じで、窒素上の二つのメチル基は非等価ですよね?

また、温度可変NMRで温度を上げていくと、二つのメチル基のシグナルはじょじょに広がり、ある温度で融合して一本となり、さらに温度を上げていくと通常の鋭い一本線となるでしょう。
上述したように、N-C間には二重結合性がありますが、これは完全な二重結合...続きを読む

QジアステレオマーのNMR

ジアステレオマーのNMR(H)について知りたいので分かる方がいましたら教えてください。
NMR測定において、エナンチオマー(RとS)はそれぞれ化学的性質が同じであるため同じスペクトルを示しますよね?
これがもしジアステレオマー(R-RとR-S)の場合にはNMRスペクトルは異なって見えるのですか?つまりR-R、R-Sを当量ずつ含有したもののNMRを測定するとそれぞれのピークが見えるのですか?
もしそうであるならば、R-R体とR-S体でシグナル位置がシフトしているのでしょうか、それともシグナルの形が変わるのでしょうか?
回答よろしくお願いします。

Aベストアンサー

違って見えますよ。
もちろん、シフト値などほとんど変わらない可能性もありえますので、必ずしも別のチャートを与えなければいけない、というものでもないですけど。それは分かりますよね?
たとえば、ひとつの分子内とはいっても、はるか離れた2点に不斉があるジアステレオマーだと、RRとRSで化学的性質およびスペクトル的性質がほとんど区別つかん、ということは考えられうるでしょう。

シグナル位置がシフトする、形(ようするにカップリングのしかたですよね?)が変わる、どっちもありえますね。
化合物によります、それは。


そもそもジ亜ステレオまーになると、NMRに限らず、ゲルやGPCでの動き方、安定性といったことからまったく別物になることも珍しくありません。

Qセライトろ過について

 セライトろ過をすると抽出効率があがる。エマルジョンが解消される。また、清濁なろ液が得られるという原理がよく分かりません。
 1点目はあらかじめ試料にセライトを練りこむことで水分を保持し、分散されやすくなるためと言われているらしいのですが良く分かりません。
 3点目は固形物(汚物)をセライト粒子が多い尽くすため(ボディフード?)、ろ紙を通過しにくいということで清濁な液が得られるのでしょうか?
 wikipediaや本を参照にしてもよく分かりません。詳しい方ご教授をお願いします。また、ろ過について分かりやすい本があれば教えて下さい。

Aベストアンサー

セライト(珪藻土)の特徴を wikipedia でもう一度読み返してみてください。文が述べている事そのものではなく、自分が関心を持っている現象との関連を読み取ることが必要です。

端的に言えば、「吸着力は低く、溶液中に溶解している成分はそのまま通し、不溶物だけを捕捉する性質がある。」という部分がポイントになります。つまり、弱い吸着を生じるが不溶物を捕捉することは出来るということです。

実際に様々な実験系を経験すれば分かってくるかと思いますが、天然物を扱っていたり、反応がきれいに進行していない場合には、水にも有機溶媒にも溶け切らない成分が液中に混在することが珍しくありません。これをろ紙などで強引にろ過しようとすると、ろ紙が目詰まりして大変な時間が掛かったりします。このような場合にセライトろ過をすると、セライトが微細な不溶成分を捕らえ、この不溶成分による抽出不良を解消できます。

余談ですが、適度な吸着力を持たせるというのは、昔は化学の実験現場で当たり前に行なわれていました。たとえば、ジョーンズ酸化でクロム酸の後処理を容易にするために、セライトとフロリジルを等量混合して反応系に加えるなんていうことを学生時代に教わったこともあります。

セライト(珪藻土)の特徴を wikipedia でもう一度読み返してみてください。文が述べている事そのものではなく、自分が関心を持っている現象との関連を読み取ることが必要です。

端的に言えば、「吸着力は低く、溶液中に溶解している成分はそのまま通し、不溶物だけを捕捉する性質がある。」という部分がポイントになります。つまり、弱い吸着を生じるが不溶物を捕捉することは出来るということです。

実際に様々な実験系を経験すれば分かってくるかと思いますが、天然物を扱っていたり、反応がきれいに進行...続きを読む

Q核スピン量子数の推定方法について教えてください

核スピン量子数の推定方法について教えてください。
核スピン量子数が
質量数が奇数、原子番号が奇数or偶数のとき半整数
質量数が偶数、原子番号が偶数のとき0
質量数が偶数、原子番号が奇数のとき整数
となるのはわかるのですが
具体的な計算方法がわかりません。
教えてくだされば助かります。

Aベストアンサー

原子核の殻模型を使うと、ある程度は推測できます。

http://oshiete.goo.ne.jp/qa/3601965.html
のNo.3の回答を参考にしてください。
1番目の日本語のページは
http://www.kutl.kyushu-u.ac.jp/seminar/MicroWorld3/3Part2/3P26/shell_model.htm
にあります。

もう少し詳しい解説は、例えば
http://www.kutl.kyushu-u.ac.jp/~wakasa/np1/np8.pdf
などをご覧ください。

■質量数が偶数、原子番号が偶数のとき
原子核中の核子は各々の角運動量を打ち消すように対になっている、と考えます。さらに、原子核の核スピン量子数Jが核子の角運動量の総和で与えられる、と考えれば、陽子数Zと中性子数Nがともに偶数ならばJ=0になります。

■質量数が奇数、原子番号が奇数or偶数のとき
質量数が奇数の原子核の核スピン量子数Jは、奇数個の核子(中性子または陽子)の入っている準位の角運動量に等しくなります。たとえば27Alの場合は
27Al(Z=13,N=14)
 陽子 :(s1/2)^2 (p3/2)^4 (p1/2)^2 (d5/2)^5
 中性子:(s1/2)^2 (p3/2)^4 (p1/2)^2 (d5/2)^6
のように d5/2 の準位に奇数個の陽子が入っているので、J=5/2になります。

NMRでよく使われる7Li, 13C, 15N, 17O, 29Si, 31Pの核スピン量子数をこの方法で推定すると、実験結果によく合います。ですけど、19Fや23Naなどのように、この推定法では予想が外れる核種も多いです。たとえば19Fの場合はZ=9なので
 陽子(予想):(s1/2)^2 (p3/2)^4 (p1/2)^2 (d5/2)^1
からJ=5/2となることが予想されますけど、実際には19FはJ=1/2なので、
 陽子(実際):(s1/2)^2 (p3/2)^4 (p1/2)^2 (s1/2)^1
のように9番目の陽子がs1/2準位に入っているモデルの方が、実験結果に合います。

■質量数が偶数、原子番号が奇数のとき
2H, 10B, 14N の核スピン量子数Jは、中性子と陽子の角運動量の足し合わせで説明できます。
2H(Z=1,N=1)
 陽子 :(s1/2)^1
 中性子:(s1/2)^1
 J=1/2+1/2=1
10B(Z=5,N=5)
 陽子 :(s1/2)^2 (p3/2)^3
 中性子:(s1/2)^2 (p3/2)^3
 J=3/2+3/2=3
14N(Z=7,N=7)
 陽子 :(s1/2)^2 (p3/2)^4 (p1/2)^1
 中性子:(s1/2)^2 (p3/2)^4 (p1/2)^1
 J=1/2+1/2=1

6Li(Z=3,N=3)の核スピン量子数は、この考え方ではうまく説明できません。この原子核については殻模型で考えるよりも、α粒子(Z=2,N=2)と重陽子(Z=1,N=1)から6Liができている、と考えることにより、J=1となることがいちおう説明できます。

原子核の殻模型を使うと、ある程度は推測できます。

http://oshiete.goo.ne.jp/qa/3601965.html
のNo.3の回答を参考にしてください。
1番目の日本語のページは
http://www.kutl.kyushu-u.ac.jp/seminar/MicroWorld3/3Part2/3P26/shell_model.htm
にあります。

もう少し詳しい解説は、例えば
http://www.kutl.kyushu-u.ac.jp/~wakasa/np1/np8.pdf
などをご覧ください。

■質量数が偶数、原子番号が偶数のとき
原子核中の核子は各々の角運動量を打ち消すように対になっている、と考えます。さらに、原子核の核ス...続きを読む


人気Q&Aランキング