http://www.okweb.ne.jp/kotaeru.php3?q=96783
に素数の性質として
6n±1があげられましたが、
解説をみても、2と3の倍数でない証明しかできてないように、おもえます。

ちなみは35は6n±1ですが、素数ではないですよね。

皆さんのご意見をお待ちします。

このQ&Aに関連する最新のQ&A

A 回答 (6件)

おお、そういうご主旨でしたか。

stomachmanの記載が曖昧だったですね。

a,b,....,zにそれぞれ勝手な自然数を代入して、f(a,b,....,z)を計算する。もしf(a,b,....,z)≧0であれば、f(a,b,....,z)は必ず素数である。

そういう式f(a,b,....,z)がある。という意味です。
    • good
    • 0
この回答へのお礼

ありがとうございます。

そういう意味でしたか。
これも証明ではなくて、そういう式の存在をしめしたものだったんですね。

知識が増えました。
でもなんで26個の変数をもつ式なんでしょうね。

なんとなくあいまいですが、とりあえず、
閉めさせてもらいます。

お礼日時:2001/07/09 23:07

> ところで26個の変数を持つ関数の件は


> f(a,・・・z)=a+b+・・・+z
> でもなりたつのでしょうか?

??どういう意味でしょう??

a,・・・zに全部1を代入してみて、成り立つかどうかお考えになってみては?

この回答への補足

> また、26個の変数を持つ関数f(a,b,c,....,z)で、
>a~zにどんな自然数を代入しても、もしf(a,b,...,z)≧0
>になれば、それは素数になっている。そういう式も
>知られています。
 このように、STOMACHMANさんがお書きになっていることに対しての関数例をあげたのですが、解釈が違ってましたか?
素数になっているのは、f(a,・・・z)の値のことですが?
ご面倒でなければ、教えてください。

補足日時:2001/07/03 12:28
    • good
    • 0

x^2 + x + 41


この式もオイラーによるもので、x=0,1,2,....,39のどれを代入しても、全部素数になります。
 また、26個の変数を持つ関数f(a,b,c,....,z)で、a~zにどんな自然数を代入しても、もしf(a,b,...,z)≧0になれば、それは素数になっている。そういう式も知られています。
 でも、n番目の素数を簡単に計算する式g(n)は知られていません。

・また、与えられた数が素数かどうかをごく簡単に判定する方法もなく、必ず手間が掛かる。桁数が多くなると大変です。その手間を少しでも減らそうと、様々な深遠な理論に基づいたアルゴリズムが研究されています。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。
他にもあったのですね。

ところで26個の変数を持つ関数の件は
f(a,・・・z)=a+b+・・・+z
でもなりたつのでしょうか?
(これもなんか勘違いしてるかな?)
時間があれば、教えてください。

お礼日時:2001/07/02 22:17

ひさしぶりにきちんと考えちゃいました。


まず、2n±1はすべての奇数を表しますよね。
+または-だけでいいけど。
(ここでは、自然数で議論しています)
   3n±1はすべての数を表しています。
   4n±1ははすべての奇数を表しますよね。
そこで、6n±1、±3 あわせてすべての奇数を表す。
ここまで良いでしょうか。
6n±3は3の倍数を表しますので、6n±1はすべての奇数から3の倍数を除いただけです。
素数はだからこの式で表すことができるのです。
しかし、すべての奇数から3の倍数を除いただけですから
35、25、49なども入るのです。
他の数の倍数になっているのかどうかまではこの式では
分からないのです。
こんなもんでよろしいでしょうか。
分かりにくいなら、また砕いてかきます。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。
基本的には、問題をちゃんと理解してなかったわけでした。

ところで、namimanaさんがおっしゃるように、
2n±1も確かに素数の性質といえるわけで、
その意味で6n±1もそうだといえますね。

これ以外にももっと沢山あるようで、なんとなく
だまされたような感覚に陥ってます。

一瞬、すごいなあと思ったのですが、(6n±1=>素数と思い込んでたので)その反動もあるみたいです。
(あ、すいません、いいわけじみた、愚痴を書いちゃって)

ありがとうございました。

お礼日時:2001/07/02 22:11

rei00 さんと同じことですが,



○ 素数は 6n±1 の形に限られる (2,3 は除く).
○ 6n±1 が全部素数とは限らない.

ということです.

f(n) のnに自然数(or 整数)を代入してゆくと素数だけが生成される,
というような式 f(n) は知られていません.
まして,すべての素数を生成するような f(n) も当然知られていません.

歴史的に有名なのは,フェルマー数 F(n) = 2^{2^n}+1 です.
F(0)=2^1 + 1 = 3
F(1)=2^2 + 1 = 5
F(2)=2^4 + 1 = 17
F(3)=2^8 + 1 = 257
F(4)=2^16 + 1 = 65537
で,ここまでは素数ですが,残念ながら F(5) は
F(5)=641×6700417
で素数ではありません(オイラーの発見による).
n≧5 で F(n) が素数である例は知られていないようです.

なお,フェルマー数 F(n) は正n角形の作図と深い関係があります.
http://oshiete1.goo.ne.jp/kotaeru.php3?q=40706
の私の回答をご覧下さい.
    • good
    • 0
この回答へのお礼

ご回答ありがとうございました。
問題をちゃんと理解してなかったようです。
フェルマ数は、初耳でした。
勉強になりました。
ありがとうございました。

お礼日時:2001/07/02 22:04

 


先の質問でお書きなのは,「素数 → 6n±1」ですね。

御質問については,その回答の ANo.#5 で shine_life さんが書かれています。

「6n±1であることは素数であるための必要条件です。」
「必要条件なので6n±1であっても素数とは限らない」です。

いかがでしょうか。

 
    • good
    • 0
この回答へのお礼

ありがとうございます。
おっしゃるとおりでした。

よくみると性質なんで、6n±1が素数である必要は
ないわけです。

読みがあさかったです。

お礼日時:2001/07/02 12:51

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


人気Q&Aランキング