No.2ベストアンサー
- 回答日時:
3点を通る円の方程式でしょ?球じゃなくて。
適当な座標変換
(X,Y,Z)' = A (x,y,z)'
('は転置、Aは実数値の3×3行列で、AA' = I (単位行列))を使って、与えられた3点が
(X1,Y1,0), (X2,Y2,0), (X3,Y3,0)
に変換されるようにすれば、(このようなAは何通りもあります。)
Z=0の平面上の3点を通る円を決める問題になります。
円の方程式
(X-B)^2 + (Y-C)^2 = R^2
は、3次元で見るとZが出てこない訳ですから、(球ではなく)軸がZ軸と平行な円柱を表しています。この方程式(つまりB,C,Rの値)が得られたら、これと、方程式
(X,Y,0)' = A (x,y,z)'
(Z=0の平面を表します。)とを連立させれば、X,Yが直ちに消去でき、x,y,zを含む2本の方程式が得られます。
No.3
- 回答日時:
失礼しました。
昨日はべろべろに酔っ払っていたようで(他のところでも絡んでいたようで情けないです)
stomachmanさんご指摘のように
全く問題を理解していなかったようで、ご迷惑おかけしました。
せっかくなのでstomachmanさんと違う筋で。
作図の問題として考えれば
平明内であれば2点間の垂直2等分線の交点が円の中心を与えますよね。
それを拡張してたとえば3点を含む平面内での
P1-P2の垂直2等分線を求めます。
点Pi、点Pi-Pj間のベクトルをそれぞれ v{i}、v{ij} と表すと
中点:
v1=(v{1}+v{2})/2
法線ベクトル(規格化していません。”・”は内積です。):
v2 = v{31} - [(v{21})・(v{31})] (v{21})/|v{21}|^2
垂直2等分線:
v1+s*v2 (sはパラメータ)
となります。
あとはもう一組の垂直2等分線を求めて、連立方程式を解けば
円の中点ベクトルvcが求められます。
あとは、ベクトルxに対して、
平面の法線ベクトル(たとえば外積を使ってvn=v{21}×v{31})
(x-vc)・(x-vc)=r^2,
(x-vc)・vn = 0
とするのでしょうか。
以上失礼しました。
No.1
- 回答日時:
球が与えられた3点を通るとすると
その3点はその3点を含む平面による断面の円上にあるはずです。
では、その円を含む球は一意的に決められるでしょうか?
2点を通る円の方程式を考えればわかるようにたくさん有ります。
そこで、球の方程式を求めれば良いという立場にたちます。
幾何学的には、比較的簡単で3点を含む平面においてて3点を通る円の中心から、その平面の法線方向に中心を持つような球を考えればよく、それを方程式であらわせばよいのではないでしょうか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 写真の図は中心(a,b)半径rの円とその円周上の(x1,y1)における接線lと円の中心とlを結ぶ任意 4 2023/08/08 16:20
- 数学 球面と接する直線の軌跡が表す領域 4 2023/07/30 12:37
- 数学 数学直線の方程式とベクトル方程式について 直線の方程式で 点(x1,y1)を通り、直線ax+by+c 1 2022/08/12 12:13
- 数学 第4問 座標平面上に3点 A(1, 1),B(1, 5), C(7, 3) を頂点とするABCがある 2 2022/10/01 14:53
- 物理学 図のように、内半径aの中空の円筒が、その中心軸が水平になるように固定されており、その中で、 質量 M 7 2023/02/15 09:23
- 数学 x^2+y^2*+z^2=169の点(5,12,0)における接平面の方程式を求めよという問題です。自 1 2022/12/24 00:40
- 数学 この問題がわかりません。 B(2,1,-1)を通り、法線ベクトルn*=(3,-1,2)の平面αの平面 4 2022/05/09 16:47
- 数学 3次元実ベクトル空間において, 平面 P:x-y+z+1=0 と直線 L:2(x-1)=-y=-z 3 2022/10/29 14:39
- 数学 初歩的な質問で申し訳ないのですが、 平面における直線→y=ax+b 空間における直線→ax+b=y= 2 2022/04/01 13:22
- 数学 写真(URL)の問題の(1)についてですが、 円c1は 2点を通ると書いてあることから、 2点の座標 5 2023/02/14 19:44
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
大人になっても苦手な食べ物、ありますか?
大人になっても、我慢してもどうしても食べれないほど苦手なものってありますよね。 あなたにとっての今でもどうしても苦手なものはなんですか?
-
遅刻の「言い訳」選手権
よく遅刻してしまうんです…… 「電車が遅延してしまい遅れました」 「歯医者さんが長引いて、、、」 「病院が混んでいて」 などなどみなさんがこれまで使ってきた遅刻の言い訳がたくさんあるのではないでしょうか?
-
2024年のうちにやっておきたいこと、ここで宣言しませんか?
2024年も残すところ50日を切りましたね。 ことしはどんな1年でしたか? 2024年のうちにやっておきたいこと、 よかったらここで宣言していってください!
-
うちのカレーにはこれが入ってる!って食材ありますか?
カレーって同じルーから作っても、家庭によって入っているものや味が微妙に違っていて面白いですよね! 「我が家のカレーにはこれが入ってるよ!」 という食材や調味料はありますか?
-
円の中心座標の問題の解き方を教えてください。
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・ちょっと先の未来クイズ第5問
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
エクセルでxを求めたいのですが!
-
2次関数と2次方程式の違い
-
数学の3大分野、代数・幾何・解析
-
高2数学の質問です。 円の方程...
-
3次、4次方程式は、具体的に何...
-
3次方程式の逆関数の求め方
-
円の方程式?円の関数じゃないの?
-
方程式の文章題(中一の数学)⤵︎ ...
-
「生まれた年月日の数字で(あ...
-
xの5乗=1 の答えを教えてく...
-
何年生で習う範囲ですか?
-
2x3行列の逆行列の公式
-
数学なのですが、 式を作りなさ...
-
未知数の数と必要な方程式の数...
-
円柱と円の方程式
-
4点を通る曲線の方程式
-
方程式って何次まで解けますか?
-
方程式の整数解を全て求めよ 3x...
-
X^3-27ってどうやって解くんで...
-
三次方程式の解として
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
エクセルでxを求めたいのですが!
-
未知数の数と必要な方程式の数...
-
2x3行列の逆行列の公式
-
円の方程式?円の関数じゃないの?
-
2次関数 y=ax2+bx+cのxを求め...
-
遊んでいそうな顔=イケメンモ...
-
数学の3大分野、代数・幾何・解析
-
2次関数と2次方程式の違い
-
3次、4次方程式は、具体的に何...
-
高2数学の質問です。 円の方程...
-
何年生で習う範囲ですか?
-
3次方程式の逆関数の求め方
-
実数係数4次方程式の判別式
-
カシオの関数電卓
-
z^3=1を満たす複素数を答えよ、...
-
xの5乗=1 の答えを教えてく...
-
円柱と円の方程式
-
「生まれた年月日の数字で(あ...
-
連立方程式の解が交点の座標と...
-
数学IIの問題です。 kを定数と...
おすすめ情報