フーリエ級数展開を使ってどうやって近似式や近似値を導くのか具体例を用いて教えて頂けないでしょうか?
という質問に対して
「ある 1 次元の熱伝導(温度 u(x,t) )の問題が
u'=∇^2 u, u(0,t)=0, u(1,t)=0, u(x,0)=f(x)
で表されたときに,固有値問題の解が
φ_n(x)=sin(nπx), n=1,2,3,・・・・・
と無限個あるので,それで級数解を仮定して
u(x,t)=Σ q_n(t) φ_n(x)
と置くことによって,q_n(t) の方程式を求めて
それを解けば,熱伝導における温度変化 u(x,t)の
級数解(ま,近似解)が求められる。
とか?」
ときたのですが、
熱伝導に関して無限に続くとは言えn=10の時の値を出したり出来ないのでしょうか?
詳しくお願い致します
A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
>フーリエ級数展開を使ってどうやって近似式や近似値を導くのか具体例を用いて教えて頂けないでしょうか?
どうぞ
https://univ-study.net/how-to-find-the-fourier-s …
http://www.cc.miyazaki-u.ac.jp/yazaki/teaching/f …
No.2
- 回答日時:
ご質問文は,任意のデータをフーリエ展開できるか?ということでしょうか。
なら,その任意のデータ f(x) とか f(t) をなんとかしてデータ化して,それと sine, cosine との内積で定義されたフーリエ係数 a_n=1/周期 ∫ f(x) sin(nπx/周期) dx を求めればいいだけですが?No.1
- 回答日時:
その回答をした者ですが,n=10のときのフーリエ係数を求めるだけです。
つまり q_n(t) を求めた上で,φ_10(x) との内積で定義されたフーリエ係数を求めるだけ。もしかして,ほぼ何もご理解していただいてないのではないでしょうか。フーリエ解析について工学部門の先生が書いた教科書をお読みください。僕が書いた例は(なんでもいいと質問にあったから)初期値境界値問題の解法にフーリエ級数を用いた場合の例です。初期値境界値問題とは何かわかっているような質問には,これはなっておりませんが?????お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
Igorの使い方について
-
分解能の値が大きいと小さいも...
-
どなたか、S45Cの電気伝導率(S...
-
有限要素法解析のエラーについて
-
gnuplot でこのような濃淡グラ...
-
FDTDにおけるPML吸収境界条...
-
1/f ゆらぎ スペクトル解析の...
-
FFTのDC成分って、なんで大きく...
-
1/3オクターブバンドについて質...
-
時間を100進法であらわしたい。
-
10,000百万円っていくらですか?
-
「強度」は高い?強い?
-
yの二乗をXで微分したら2y・y' ...
-
積分定数Cとは一体なんですか?
-
電気関係の質問なんですが・・・
-
穴が開く? 空く? 明く?
-
角度の計算でdegとradがあると...
-
微分可能ならば連続ですが、 不...
-
穴あけのあけってどんな漢字で...
-
「1人あたりの1年間あたりの~...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
MOSFETのgm-Vgs特性
-
分解能の値が大きいと小さいも...
-
どなたか、S45Cの電気伝導率(S...
-
近似直線について
-
FFTのDC成分って、なんで大きく...
-
1/3オクターブバンドについて質...
-
Igorの使い方について
-
原点修正の方法
-
半値幅の測り方
-
隣接平均と移動平均
-
savitzky-golayのフィルタについて
-
データの回帰分析と相関係数(R,...
-
Ngraphで円を描く方法を教えて...
-
プランク定数の実験をしたので...
-
有効数字…?
-
スペクトル解析と周波数解析の違い
-
FDTDにおけるPML吸収境界条...
-
B-H曲線について
-
指数関数のカーブフィッティング
-
・フーリエ変換?
おすすめ情報