
数学の質問です。
2つの2次方程式 2x∧2+kx+4=0, x∧2+x+k=0 がただ一つの共通の実数解をもつように定数kの値を定め、その共通解を求めよ。
という問題についてです。
共通解をx=α とおき方程式にそれぞれ代入。連立させると(k−2)(α−2)=0 よってk=2またはα=2。k=2の場合は元の二つの方程式の判別式が負になるので 共通の実数解をもたない。a=2の場合はk=−6 と求まり、2つの方程式に代入し解を求め、共通の1つの実数解を持つことを確認し、答えはk=-6, 共通解はx=2
というのが解答の大まかな流れです。
いくつか質問です。
まず、共通解x=αをもつという前提で式を作り、k=2またはα=2と求まったと思いますが、実際はk=2の場合は共通解をもたない、って矛盾してないですか?
また、共通解x=αを持つ⇔ k=2またはα=2 となりますよね。また「共通解をもつように」という前提がありますが、そうするとk=2の場合がNGだと分かったら自然と答えはa=2の場合にならないんですか?なぜ確かめる必要があるんですか?
よろしくお願いします。
A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
2x^2+kx+4=0
x^2+x+k=0
2x^2+2x+2k=0
kx+4=2x+2k
(k-2)x-2(k-2)=0
(k-2)(x-2)=0
k=2の場合は
x^2+x+2=0
だから
k=2の場合は
x=(-1±i√7)/2
という共通解を持つので矛盾しません
ただ単に
「
共通解を持つ
」
というだけなら
k=2の場合はNGではありません
共通解を持つ
だけでなく
ただ一つの共通の実数解
を
持つ事を確かめる必要があるのです
No.2
- 回答日時:
k=2を元の2式に代入して検討してないから、話が見えてこない。
k=2のとき、共通解は、持つに決まってる。代入してよく眺めればすぐに判る。
問題は、持つに決まってるけどそれが実数なのかどうか。
実数なのかどうかだから、判別式使ってる。
なぜ確かめる必要があるのかは、元の2式に代入すれば一目瞭然。
今こういうところで躓いてないと、本番でもやらかしていた。
何とかの解法がぁで受かるのは、理科大まで。
そこから先は、実際どうなのよときちんと確認していかないと受からない。
k=2を元の2式に代入した式をよく見て、冷や汗が出ないようなら、たぶん理科大が限界だと思う。失敗は成功の母。
ということは、代入した結果が題意を満たす、1点でx軸と接するような二次曲線(重解)であれば、それも答という事になったんでしょう。
解法の丸暗記しかやってないと、見落とすかもしれません。
No.1
- 回答日時:
共通というくくりで解を見出そうとしている関係上、虚数解も出てくることは想定される。
なので、解が前提条件をみたすかどうか確かめる必要がある。
質問文にも書いてある通りk=2の場合は判別式が負となる。
判別式が負ということは解は虚数解になる。
虚数解だと「ただ一つの共通の実数解」という前提条件を満たさなくなる。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
今、見られている記事はコレ!
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
<x+y=1 xy=1 を同時に満た...
-
Excelで合計値を基にデータを均...
-
高校数学の問題について 2次方...
-
答えを教えて
-
複数の品目での単価と全体の合...
-
微分方程式で、分母=0の場合は...
-
微分の重解条件は公式として使...
-
3次式の逆関数の求め方
-
解なし≠解はない
-
数学についてです 「 aを定数と...
-
高校数学の問題について質問です!
-
行列の問題
-
ピクロスでマスを間違って埋め...
-
16の4乗根は±2ではない!?
-
微分方程式の初期値問題
-
|x+1|≦2x+5 の求め方を教えてく...
-
行列の問題について教えてください
-
二次不等式について
-
数学の質問です。 2つの2次方程...
-
今年最後の質問です(積分定数の...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学についてです 「 aを定数と...
-
Excelで合計値を基にデータを均...
-
数学II 三次方程式 x^3-5x^2+ax...
-
解なし≠解はない
-
高校数学の問題について 2次方...
-
x² +4 を(ア)有理数(イ)実数(ウ...
-
aの値に関係なくとよく問題で見...
-
tanX=Xの解
-
微分の重解条件は公式として使...
-
2次方程式X^2-3X-1=0の2つの...
-
解に3つ以上±や∓がある時複号...
-
複数の品目での単価と全体の合...
-
適正解と最適解
-
なんで4次方程式f(x)=0がx=2を...
-
16の4乗根は±2ではない!?
-
3次方程式の定数の範囲の問題で...
-
答えを教えて
-
微分方程式 定常解について・・・
-
微分方程式で、分母=0の場合は...
-
x^4+2ax^2-a+2=0が...
おすすめ情報