
2022 11.11 09:45に投稿した質問に対する2022.11.11 18:40に頂いた解答について質問が3つあります。
以下は2022.11.11 18:40に頂いた解答です。
「θ = π/2 の周囲で sinθ/cosθ を近似するというのと
sinθ/cosθ の近似値を求めるというのは違うことです。
lim_{θ→π/2} sinθ/cosθ が発散することは判っている
のだから、値を近似することには意味がない。
でも、lim_{θ→π/2+0} sinθ/cosθ = +∞ に向けて
θ→π/2+0 のとき sinθ/cosθ がどのくらい早く増大するか
を考えることには意味がありますね。
そのためには、θ = π/2 の周囲での sinθ/cosθ の
ローラン展開が負次数のどんな項を持つか とか
最低次数の項の係数はいくつか とかを考えることになります。
lim_{θ→π/2+0} sinθ/cosθ を
lim_{θ→π/2+0} a(m)/(θ-π/2)^m で近似するわけです。
ローラン展開が -2 次以下の項を持つ場合にも、
a(-1) の値を知ることが重要な場面はあります。
それが、あなたが以前に繰り返し質問していた留数としてです。
留数には留数の使い道がありますが、
留数を求めることは近似ではありません。」
以下は3つの質問です。
⑦
>>θ = π/2 の周囲で sinθ/cosθ を近似するというのと
sinθ/cosθ の近似値を求めるというのは違うことです。
近似式を作る事と近似値を求める事は違うという事でしょうか?
⑧
>> でも、lim_{θ→π/2+0} sinθ/cosθ = +∞ に向けて
θ→π/2+0 のとき sinθ/cosθ がどのくらい早く増大するか
を考えることには意味がありますね。
そのためには、θ = π/2 の周囲での sinθ/cosθ の
ローラン展開が負次数のどんな項を持つか とか
最低次数の項の係数はいくつか とかを考えることになります。
lim_{θ→π/2+0} sinθ/cosθ を
lim_{θ→π/2+0} a(m)/(θ-π/2)^m で近似するわけです。
との事ですが、
lim_{θ→π/2+0} a(m)/(θ-π/2)^mはどこから出て来たのでしょうか?
出来ればlim_{θ→π/2+0} a(m)/(θ-π/2)^mがどうやって作ったのか導くまでを教えてほしいです。
⑨
また、留数(項の係数)を求める式は
lim_{θ→π/2}(θ-π/2)sin(θ)/cos(θ)だったはずですが、
2022.11.11 18:40の文章を読むと
lim_{θ→π/2+0} a(m)/(θ-π/2)^mで留数を求めるように書かれている気がします。
lim_{θ→π/2+0} a(m)/(θ-π/2)^mは何を求めるための式なのでしょうか?
最後に「lim_{θ→π/2} sinθ/cosθ が発散することは判っている
のだから、値を近似することには意味がない。
でも、lim_{θ→π/2+0} sinθ/cosθ = +∞ に向けて
θ→π/2+0 のとき sinθ/cosθ がどのくらい早く増大するか
を考えることには意味がありますね。」
また、お手数ですが、「2022 11.11 09:45に投稿した質問」した質問がどこにあるか、どけにかるかわかりたすか?
A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
tan(z)をローラン展開して
tan(z)=-1/(z-π/2)+(1/3)(z-π/2)+…
とすると
右辺の
-1/(z-π/2)+(1/3)(z-π/2)
が
1次までの近似式です
これを
f1(z)=-1/(z-π/2)+(1/3)(z-π/2)
とすると
z=π/2+0.001
での
f1(π/2+0.001)=(-1/0.001)+(0.001/3)
↓-1/0.001=-1000だから
f1(π/2+0.001)
=-1000+0.00033333
=-999.999666666…
が
近似値です
lim_{θ→π/2+0} sinθ/cosθ=-∞
も
m=-1
lim_{θ→π/2+0} a(m)(θ-π/2)^m=-∞
も
-∞なので
近似式ではありません
No.2
- 回答日時:
tan(z)をローラン展開して
tan(z)=-1/(z-π/2)+(1/3)(z-π/2)+…
とすると
右辺の
-1/(z-π/2)+(1/3)(z-π/2)
が
1次までの近似式です
これを
f1(z)=-1/(z-π/2)+(1/3)(z-π/2)
とすると
z=π/2+0.001
での
f1(π/2+0.001)=(-1/0.001)+(0.001/3)
↓-1/0.001=-1000だから
f1(π/2+0.001)
=-1000+0.00033333
=-999.999666666…
が
近似値です
lim_{θ→π/2+0} sinθ/cosθ=∞
も
m=-1
lim_{θ→π/2+0} a(m)(θ-π/2)^m=∞
も
∞なので
近似式ではありません
No.1
- 回答日時:
tan(z)をローラン展開して
tan(z)=-1/(z-π/2)+(1/3)(z-π/2)+…
とすると
右辺の
-1/(z-π/2)+(1/3)(z-π/2)
が
1次までの近似式です
これを
f1(z)=-1/(z-π/2)+(1/3)(z-π/2)
とすると
z=π/2+0.001
で
f1(π/2+0.001)=(-1/0.001)+(0.001/3)
↓-1/0.001=-1000だから
f1(π/2+0.001)
=-1000+0.00033333
=-999.999666666…
が
近似値です
lim_{θ→π/2+0} sinθ/cosθ=∞
も
m=-1
lim_{θ→π/2+0} a(m)/(θ-π/2)^m=∞
も
∞なので
近似式ではありません
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
cos(θ-π/2)=sinθ sin(θ-π/2)=-c...
-
加法定理
-
円周率の求め方
-
数学の論理記号について
-
こちらの式はtan(z)のローラン...
-
三角関数
-
アーク計算
-
辺の和の最大値と加法定理
-
マクローリン展開について
-
直交座標に直す問題
-
数学の問題で。。。0<θ<90 Sin...
-
y=F(x,y')の微分方程式について
-
教えてください!!
-
数学とかで、答えの下に線を引...
-
【問題】 2次関数 f(x)=x^2−2ax...
-
tanθ=2分の1のときの sinθとcos...
-
e^iθの大きさ
-
SPIの問題
-
連立不等式の答えの書き方について
-
なんでx軸と接しているところが...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
cos(θ-π/2)=sinθ sin(θ-π/2)=-c...
-
sinx-cosx=√2sinx(x-π/4) と解...
-
cos(-π/3)とsin(-π/3)の値
-
位相差を時間に
-
マクローリン展開について
-
t^1/2のラプラス変換の像関数を...
-
三角関数の問題です!
-
はさみうちの定理を使う極限の...
-
数二の問題で
-
0≦θ<2πにおいてのtanθ≦√3をみ...
-
数IIの問題です!
-
0≦x<2πのときのsin{x+(π/3)}=1/...
-
タンジェントのマイナス1乗に...
-
[数学] -Sinπ/2 と Sin(-π/2)...
-
三角関数の問題なのですが、 0≦...
-
tanπ/24
-
「x軸の正の向きとなす角」とい...
-
三角関数の合成の方程式
-
sin 5/12π, cos 5/12π, tan 5/1...
-
sin(θ+2分の3π)が (θ+2分...
おすすめ情報