
f(x)=cosxが区間I=[0,∞)で一様連続であることを示す問題です。私は以下のように示したのですが、正しく議論できていますでしょうか?ダメな場合どこがおかしいかを教えていただきたいです。∀y∈Rに対して|siny|≦|y|はこの前の問題(例題)でも使っていたので認めています。
∀x,a∈Iに対してδ=2ε/(|x+a|)とする。
x,a≠0のとき
|x-a|<δ⇒|cosx-cosa|=2|sin((x+a)/2)sin((x-a)/2)|≦2|(x+a)/2||(x-a)/2|=|x+a||x-a|/2<ε
x,a=0の時は
|cosx-cosa|=0<ε(∵ε>0)
よってf(x)=cosxは区間Iで一様連続
よろしくお願いします。
A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
一様連続がどういう意味なのかお分かりでないらしい。
また場合分けについて> x,a≠0のとき
> x,a=0の時
だけ検討したって不足で、x=0,a≠0の場合とx≠0,a=0の場合が抜けてますね。
No.2
- 回答日時:
ダメ
δはx,aに関係無い値でなければなりません
δ=2ε/(|x+a|)ではダメです
fが
一様連続とは
任意の
ε>0に対して
あるδ>0が存在して
|x-a|<δとなる任意のx,aに対して
|f(x)-f(a)|<ε
となる
とき
fは一様連続といいます
δはx,aに関係無い値でなければなりません
任意の
ε>0
に対して
δ=ε
とする
|x-a|<δ
となる任意のx,aに対して
|f(x)-f(a)|
=|cosx-cosa|
=2|sin((x+a)/2)||sin(x-a)/2|
↓|sin(x+a)/2|≦1 だから
≦2|sin(x-a)/2|
≦2|(x-a)/2|
=|x-a|
<δ
=ε
No.1
- 回答日時:
一様連続性を示す時は、εにたいしてきめるδは
εだけで決まるものでなければいけない。
だからその証明はおかしい。
正しくは
|cosx-cosa|=2|sin((x+a)/2)sin((x-a)/2)|≦|x-a|だから
ε>0にたいしてδをδ=εとすれば
|x-a|<δのとき|cosx-cosa|<ε
というふうにしてください。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 連続であることを示すときの最後のεについて 6 2023/04/14 23:00
- 数学 次の解析学の問題がわからないので教えて頂きたいです。 k>0 関数f(x)が区間[0,∞)で連続であ 3 2022/11/17 20:52
- 数学 次の解析学の問題が解けないので教えていただきたいです。 関数f(x),g(x)がそれぞれ区間I,Jで 2 2022/11/17 20:50
- 数学 (-∞,∞)上の関数y=y(x)はx<0でy”-4y=e^xを、x>0でy“-4y=e^(-x)co 2 2022/07/29 17:03
- 数学 数学の問題です。回答よろしくお願いします。 sinが無限に続く関数f(X)=sin(sin(sin( 3 2022/09/21 10:40
- 数学 (-∞,∞)上の関数y=y(x)はx<0でy”-4y=e^xを、x>0でy“-4y=e^(-x)co 2 2022/07/30 11:50
- 数学 0<x<πで-3√2sinx cosx sin(x+π/4)=0を満たすxは どのようにして求めるの 2 2023/06/26 19:47
- 数学 f(x)=x^2 , x∈I=[ー1, 1]において、 f(x)は区間Iで一様連続か?という(証明) 2 2022/09/02 14:15
- 数学 原始関数の存在性の証明について 数学科の3回生です。院試の勉強でつまづいたので助けてほしいです。 R 6 2022/11/13 19:19
- 数学 大学数学 解析学 区間[a,b]で有界な関数f(x)が[a,b)で連続であるとき、f(x)は[a,b 2 2022/12/23 04:04
今、見られている記事はコレ!
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
-
大麻の使用罪がなかった理由や法改正での変更点、他国との違いを弁護士が解説
ドイツで2024年4月に大麻が合法化され、その2ヶ月後にサッカーEURO2024が行われた。その際、ドイツ警察は大会運営における治安維持の一つの方針として「アルコールを飲んでいるグループと、大麻を吸っているグループ...
-
ピンとくる人とこない人の違いは?直感を鍛える方法を心理コンサルタントに聞いた!
根拠はないがなんとなくそう感じる……。そんな「直感がした」という経験がある人は少なくないだろう。ただ直感は目には見えず、具体的な説明が難しいこともあるため、その正体は理解しにくい。「教えて!goo」にも「...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
"交わる"と"接する"の定義
-
f(x) g(x) とは?
-
微分について
-
統計学
-
数学の f(f(x))とはどういう意...
-
関数 f(x) = e^(2x) につい...
-
eのx乗はeのx乗のまんまなのに...
-
数学 fとf(x) の違いについて
-
αを代数的数とし、f(x)⊂Z[x]を...
-
lim[x→0] x/(e^x-1) を計算する...
-
数学 定積分の問題です。 関数f...
-
楕円積分
-
Henselの補題の証明で質問です。
-
次の等式を満たす関数f(x)を求...
-
左上図、左下図、右上図、右下...
-
数1 2つの二次関数の大小関係 ...
-
複素関数f(z)のテーラー展開や...
-
数学Ⅱの問題です。 解説お願い...
-
剰余の定理
-
関数方程式 未知関数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報