No.3ベストアンサー
- 回答日時:
oodaiko先生とだぶってしまったので補足します。
(私が書き始めたときは回答者数0だったもので・・・)
f '(x)=2x sin(1/x)-cos(1/x) がx=0で連続でないことを示します。
すなわち、
lim(x→0) f '(x) が存在しないことを示します。
「lim(x→0) f '(x) が存在するならば
0に収束する任意の数列An,Bnについて
lim(n→∞) f '(An)=lim(n→∞) f '(Bn)
が成り立つ。」
という定理があったことを思い出してください。
An=1/(2nπ)、Bn=1/(2nπ+π/2) としますと
lim(n→∞) f '(An)=lim(n→∞) {1/(nπ) sin(2nπ)-cos(2nπ)}
=lim(n→∞) (-1)=-1
lim(n→∞) f '(Bn)
=lim(n→∞) {2/(2nπ+π/2) sin(2nπ+π/2)-cos(2nπ+π/2)}
=lim(n→∞) (2/(2nπ+π/2))=0
よって、lim(n→∞) f '(An)≠lim(n→∞) f '(Bn)
「 」の定理の対偶を考えると、
lim(x→0) f '(x) が存在しない
ことが分かりますね。
ところでoodaiko先生に質問したいのですが。
>lim_{x→0} ( 2x sin (1/x) - cos (1/x))
>= lim_{x→0} 2x sin (1/x) - lim_{x→0} cos (1/x)
の部分です。
lim(f(x)+g(x))=lim f(x)+lim g(x)
が成り立つのは
lim f(x)、lim g(x)がそれぞれ存在するとき
ですよね。でもlim_{x→0} cos (1/x) は存在しない・・・
実は私が読んでいた本でもoodaiko先生のように証明しているんです。
何か特殊な事情でもあって、この場合は例外的に
lim(f(x)+g(x))=lim f(x)+lim g(x)
が成り立っているのでしょうか。
なるほど、振動しちゃう時はその一部のみの値を取る数列を考えればいいんですね。
いつもながら勉強になります。
ありがとうございました。
No.4
- 回答日時:
あちゃー。
又やっちゃいました。どうも急いで書くとろくなことがない。shushouさん<
>im(f(x)+g(x))=lim f(x)+lim g(x)
>が成り立つのは lim f(x)、lim g(x)
>がそれぞれ存在するときですよね。
おっしゃる通りです。
今の場合fに関してはlimが存在するが、gに関してはlimが存在しないのでしたから
lim (f(x)+g(x)) = lim f(x) + lim g(x)
などどは言えませんね。
そもそも極限が存在しないのならこの式は意味がない。
そこで極限が存在しないことを言うには
shushouさんのような方法で示すしかない。
shushouさんの読まれた本の筆者も私と同様の慌て者だと思います。
どうも失礼しました。m(_ _)m
なるほどねー。shushouさんがあれだけかけてlim(x→0) f '(x) が存在しないことを示されたのにはそう言う背景があったんですか。
> shushouさん
いつもの事ながら検算&理解に時間がかかりますのでご返事は今しばらくお待ち下さい。
No.2
- 回答日時:
代表的で(数学科の人には)有名な例を。
f(x)=x^2 sin(1/x) (xが0以外)
f(0)=0
とします。
するとf(x)は微分可能ですが、
f '(x)=2x sin(1/x)-cos(1/x)
は、x=0で連続ではなくなります。
No.1
- 回答日時:
それじゃ
f(x)=x^2 sin (1/x)
などいかがでしょうか。
|sin (1/x)|<1ですから
f(0)=0となることはよろしいですね。
またx≠0なら通常の方法で微分可能ですね。すなわち
f'(x)=2x sin (1/x) - cos (1/x)
となります。
x=0の時は微分の定義に戻って
f'(0) = lim_{x→0} ( f(x) - f(0))/ x = lim_{x→0} ( x^2 sin (1/x) )/ x
= lim_{x→0} x sin (1/x)=0
となります。すなわちfはすべての点で微分可能です。
しかし
lim_{x→0} f'(x)=lim_{x→0} ( 2x sin (1/x) - cos (1/x))
= lim_{x→0} 2x sin (1/x) - lim_{x→0} cos (1/x)
で、最後の式の第1項は0ですが第2項は不確定なのでf'(x)は0で不連続です。
(f'(x)が0で連続であると言うのはlim_{x→0} f'(x)=f'(0)となるということでしたね。)
> |sin (1/x)|<1ですから
> f(0)=0となることはよろしいですね。
1/x自体x≠0でしか定義できないので
f(x) = x^2 sin (1/x) (x≠0), f(0) = 0
と定義された関数と考えた方がいい気がしますが。
数学の世界ではいちいちそう言う七面倒くさい場合分けはしないんですか?
後は納得です。要は普通の関数じゃなく、ちみちみした所でぐちゃぐちゃした関数とか、
そういうまともじゃない関数じゃないとなかなかこれに当てはまる例はないという事ですね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 f : ℝ→ℝ が微分可能で一様連続のとき、導関数 f' は ℝ で有界であるといえますか? 7 2022/07/03 20:10
- 数学 大学数学 解析学 区間[a,b]で有界な関数f(x)が[a,b)で連続であるとき、f(x)は[a,b 2 2022/12/23 04:04
- 数学 関数f(x)が閉区間[a、b]で連続で開区間(a、b)で微分可能なら f(b)-f(a)/b-a = 1 2023/07/19 17:26
- 数学 微分(全微分)についての質問です。 2 2022/04/07 17:08
- 物理学 ポテンシャルが有限で不連続の時、右側の波動関数をφ1(x)、左側をφ2(x)とする。境界条件の「波動 2 2023/06/04 13:53
- 数学 f'(x)=g'(x)+2xsin(1/x)-cos(1/x) (x≠0) =g'(0) 2番は f 4 2023/04/19 00:47
- 数学 (1+x^2)y'=1 の微分で教えて下さい 2 2022/08/30 10:23
- 数学 数学IIについて質問です 関数f(x)=x^3+2x^2-2について、x=2における微分係数は【?? 3 2022/09/11 20:29
- 数学 微分可能 連続 わからない 3 2022/06/22 17:22
- 数学 f(x,y)=(2x^3-y^3)/(4x^2+y^2)、(x,y)≠(0,0) =0、(x,y)≠ 1 2022/10/14 17:30
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
「平成」を感じるもの
「昭和レトロ」に続いて「平成レトロ」なる言葉が流行しています。 皆さんはどのようなモノ・コトに「平成」を感じますか?
-
「覚え間違い」を教えてください!
私はかなり長いこと「大団円」ということばを、たくさんの団員が祝ってくれるイメージで「大円団」だと間違えて覚えていました。
-
2024年のうちにやっておきたいこと、ここで宣言しませんか?
2024年も残すところ50日を切りましたね。 ことしはどんな1年でしたか? 2024年のうちにやっておきたいこと、 よかったらここで宣言していってください!
-
とっておきの「まかない飯」を教えて下さい!
飲食店で働く方だけが食べられる、とっておきの「まかない飯」。 働いてらっしゃる方がSNSなどにアップしているのを見ると、表のメニューには出てこない秘密感もあって、「食べたい!!」と毎回思ってしまいます。
-
微分可能ならば連続ですが、 不連続ならば微分不可能ですか? よろしくお願いします
統計学
-
極限、不連続
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/2】 国民的アニメ『サザエさん』が打ち切りになった理由を教えてください
- ・ちょっと先の未来クイズ第5問
- ・【お題】ヒーローの謝罪会見
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
どんな式でも偶関数か奇関数の...
-
次の関数の増減を調べよ。 f(x)...
-
フーリエ級数について
-
Gnuplotについて エラーメッセ...
-
恒等式の特質について
-
f(x)=sin(x)/x って、とくにf(0...
-
数I 2次不等式x²+2x+m(m-4)≧0が...
-
三次関数が三重解を持つ条件とは?
-
微方の基礎だとおもうんです
-
積分の問題。次の条件を満たす2...
-
【大至急!!!】数学的帰納法...
-
xの多項式f(x)最高次の項の係数...
-
奇関数 偶関数
-
f(x) g(x) とは?
-
ε-δ論法について
-
【高校数学】問題の答えを教え...
-
三次関数のグラフとx軸は接し...
-
x=0におけるテイラー展開を求...
-
n次多項式f(x) f(x^3)の最高次...
-
微分について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
差分表現とは何でしょうか? 問...
-
f(x) g(x) とは?
-
数学の f(f(x))とはどういう意...
-
"交わる"と"接する"の定義
-
二次関数 必ず通る点について
-
ニュートン法について 初期値
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
微小量とはいったいなんでしょ...
-
数学II 積分
-
微分について
-
二重積分を使った回転体の体積...
-
三次関数が三重解を持つ条件とは?
-
微分の公式の証明
-
左上図、左下図、右上図、右下...
-
数学の洋書を読んでいて分から...
-
関数 f(x) = e^(2x) につい...
-
どんな式でも偶関数か奇関数の...
-
フーリエ変換できない式ってど...
おすすめ情報